RESUMEN
Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.
Asunto(s)
COVID-19/inmunología , COVID-19/virología , Macrófagos Alveolares/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2/patogenicidad , Linfocitos T/inmunología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19/genética , Estudios de Cohortes , Humanos , Interferón gamma/inmunología , Interferones/inmunología , Interferones/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Neumonía Viral/genética , RNA-Seq , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Análisis de la Célula Individual , Linfocitos T/metabolismo , Factores de TiempoRESUMEN
The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterized by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here, we used electron cryo-microscopy to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. We identified a new Type III CTE tau filament, where protofilaments pack against each other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.
Asunto(s)
Esclerosis Amiotrófica Lateral , Encefalopatía Traumática Crónica , Demencia , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Tauopatías , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Demencia/etiología , Trastornos Parkinsonianos/complicaciones , Japón , Proteínas tauRESUMEN
Drug-resistant shigellosis is increasing, particularly among men who have sex with men (MSM). During July-October 2022, an extended-spectrum beta-lactamase producing Shigella sonnei cluster of 9 patients was identified in Chicago, of whom 8 were MSM and 6 were festival attendees. The cluster also included 4 domestic travelers to Chicago. Sexual health care for MSM should include shigellosis diagnosis and prevention.
RESUMEN
BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.
Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Sitios de Carácter Cuantitativo , Genómica , Peso Corporal/genética , Fenotipo , Polimorfismo de Nucleótido Simple , ChinaRESUMEN
The traditional lateral flow immunoassay (LFIA) with a single signal output mode may encounter challenges such as low sensitivity, poor detection range, and susceptibility to external interferences. These limitations hinder its ability to meet the growing demand for advanced LFIA. To address these issues, the rational development of multifunctional labels for multimodal LFIA emerges as a promising strategy. Herein, this study reports a multimodal LFIA using "four-in-one" multifunctional dandelion-like gold@platinum nanoparticles (MDGP). The inherent properties of MDGP, such as the broad absorption spectrum, porous dandelion-like nanostructure, and bimetallic composition with gold and platinum, endow them with capacities in dual spectral-overlapped fluorescence quenching, optical readout, catalytic activity, and photothermal effect. Benefiting from their multifunctional properties, the MDGP-LFIA enables multimodal outputs including fluorescent, colorimetric, and photothermal signals. This multimodal MDGP-LFIA allows for the detection of acetamiprid at a range of 0.01-50 ng mL-1, with the lowest qualitative and quantitative detection results of 0.5 and 0.008 ng mL-1, respectively, significantly better than the traditional gold nanoparticles-based LFIA. The diversity, complementarity, and synergistic effect of integrated output signals in this multimodal MDGP-LFIA improve the flexibility, practicability, and accuracy of detection, holding great promise as a point-of-care testing platform in versatile application scenarios.
Asunto(s)
Oro , Nanopartículas del Metal , Platino (Metal) , Oro/química , Platino (Metal)/química , Nanopartículas del Metal/química , Inmunoensayo/métodosRESUMEN
Candida auris poses a global public health challenge, causing multiple outbreaks within healthcare facilities. Despite advancements in strain typing for various infectious diseases, a consensus on the genetic relatedness threshold for identifying C. auris transmission in local hospital outbreaks remains elusive. We investigated genetic variations within our local isolate collection using whole-genome-based single nucleotide polymorphism (SNP) phylogenetic analysis. A total of 74 C. auris isolates were subjected to whole-genome sequencing (WGS) and SNP phylogenetic analysis via the QIAGEN CLC Genomics Workbench. Isolates included known related strains from the same patient, strains from different hospitals, strains from our hospital patients with no epidemiological link, and 19 patient isolates from a recent C. auris outbreak. All but three isolates were identified to be Clade IV. By examining the genetic diversities of C. auris within patients and between patients, we identified a SNP variation range of 0-13 for identifying related isolates. During an outbreak investigation, utilizing this range, maximum likelihood phylogenetic analysis revealed two distinct clusters that aligned with the epidemiological links. Determining a SNP variation range to delineate genetic relatedness among isolates is crucial for the application of WGS and SNP phylogenetic analysis in identifying C. auris transmission during hospital outbreak investigations. The use of WGS SNP phylogenetic analysis via the CLC Genomics Workbench has emerged as a valuable method for typing C. auris in clinical microbiology laboratories.
Asunto(s)
Candida auris , Candidiasis , Infección Hospitalaria , Brotes de Enfermedades , Filogenia , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Humanos , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Candidiasis/microbiología , Candidiasis/epidemiología , Candidiasis/transmisión , Candida auris/genética , Genoma Fúngico , Hospitales , Epidemiología Molecular/métodos , GenotipoRESUMEN
Dominantly inherited mutation D395G in the gene encoding valosin-containing protein causes vacuolar tauopathy, a type of behavioural-variant frontotemporal dementia, with marked vacuolation and abundant filamentous tau inclusions made of all six brain isoforms. Here we report that tau inclusions were concentrated in layers II/III of the frontotemporal cortex in a case of vacuolar tauopathy. By electron cryomicroscopy, tau filaments had the chronic traumatic encephalopathy (CTE) fold. Tau inclusions of vacuolar tauopathy share this cortical location and the tau fold with CTE, subacute sclerosing panencephalitis and amyotrophic lateral sclerosis/parkinsonism-dementia complex, which are believed to be environmentally induced. Vacuolar tauopathy is the first inherited disease with the CTE tau fold.
Asunto(s)
Encefalopatía Traumática Crónica , Mutación , Tauopatías , Proteína que Contiene Valosina , Proteínas tau , Humanos , Tauopatías/genética , Tauopatías/patología , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Proteína que Contiene Valosina/genética , Vacuolas/patología , Vacuolas/ultraestructura , Masculino , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Persona de Mediana Edad , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Encéfalo/patología , FemeninoRESUMEN
Two yeast strains (NYNU 211162 and NYNU 211275) were isolated from rotting wood collected in the Baotianman Nature Reserve, Henan Province, central China. Phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region revealed that the strains represent a phylogenetically distinct species within the genus Spencermartinsiella. The name Spencermartinsiella henanensis fa., sp. nov. is proposed for this species with holotype CICC 33543T (Mycobank MB 851142). S. henanensis sp. nov. differed by only 3 nt (~0.5â%) substitutions from the closest known species S. europaea NCAIM Y.01817T in the D1/D2 domain, but by 33 nt (~6â%) substitutions, 34 nt (~3.8â%) substitutions, 30 nt (~5.6â%) substitutions and 75 nt (~9.9â%) substitutions in the ITS region and the partial TEF1, COXII and RPB2 genes. Additionally, S. henanensis sp. nov. can be physiologically distinguished from S. europaea by its ability to assimilate inulin, inability to assimilate ethylamine and cadaverine, and incapability of growth at 30 °C.
Asunto(s)
Saccharomycetales , Madera , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genéticaRESUMEN
Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
Asunto(s)
Antibacterianos , Vendajes , Hidrogeles , Fármacos Fotosensibilizantes , Infección de Heridas , Humanos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Hidrogeles/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiologíaRESUMEN
Immune checkpoint blockade (ICB) treatment has demonstrated excellent medical effects in oncology, and it is one of the most sought after immunotherapies for tumors. However, there are several issues with ICB therapy, including low response rates and a lack of effective efficacy predictors. Gasdermin-mediated pyroptosis is a typical inflammatory death mode. We discovered that increased expression of gasdermin protein was linked to a favorable tumor immune microenvironment and prognosis in head and neck squamous cell carcinoma (HNSCC). We used the mouse HNSCC cell lines 4MOSC1 (responsive to CTLA-4 blockade) and 4MOSC2 (resistant to CTLA-4 blockade) orthotopic models and demonstrated that CTLA-4 blockade treatment induced gasdermin-mediated pyroptosis of tumor cells, and gasdermin expression positively correlated to the effectiveness of CTLA-4 blockade treatment. We found that CTLA-4 blockade activated CD8+ T cells and increased the levels of interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) cytokines in the tumor microenvironment. These cytokines synergistically activated the STAT1/IRF1 axis to trigger tumor cell pyroptosis and the release of large amounts of inflammatory substances and chemokines. Collectively, our findings revealed that CTLA-4 blockade triggered tumor cells pyroptosis via the release of IFN-γ and TNF-α from activated CD8+ T cells, providing a new perspective of ICB.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias de Cabeza y Cuello , Ratones , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Antígeno CTLA-4 , Factor de Necrosis Tumoral alfa/metabolismo , Piroptosis , Gasderminas , Citocinas/metabolismo , Interferón gamma/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Microambiente TumoralRESUMEN
OBJECTIVES: The timing of tracheostomy for critically ill patients on mechanical ventilation (MV) is a topic of controversy. Our objective was to determine the most suitable timing for tracheostomy in patients undergoing MV. DESIGN: Retrospective cohort study. SETTING AND PARTICIPANTS: One thousand eight hundred eighty-four hospitalisations received tracheostomy from January 2011 to December 2020 in a Chinese tertiary hospital. METHODS: Tracheostomy timing was divided into three groups: early tracheostomy (ET), intermediate tracheostomy (IMT), and late tracheostomy (LT), based on the duration from tracheal intubation to tracheostomy. We established two criteria to classify the timing of tracheostomy for data analysis: Criteria I (ET ≤ 5 days, 5 days < IMT ≤ 10 days, LT > 10 days) and Criteria II (ET ≤ 7 days, 7 days < IMT ≤ 14 days, LT > 14 days). Parameters such as length of ICU stay, length of hospital stay, and duration of MV were used to evaluate outcomes. Additionally, the outcomes were categorized as good prognosis, poor prognosis, and death based on the manner of hospital discharge. Student's t-test, analysis of variance (ANOVA), Mann-Whitney U test, Kruskal-Wallis test, Chi-square test, and Fisher's exact test were employed as appropriate to assess differences in demographic data and individual characteristics among the ET, IMT, and LT groups. Univariate Cox regression model and multivariable Cox proportional hazards regression model were utilized to determine whether delaying tracheostomy would increase the risk of death. RESULTS: In both of two criterion, patients with delayed tracheostomies had longer hospital stays (p < 0.001), ICU stays (p < 0.001), total time receiving MV (p < 0.001), time receiving MV before tracheostomy (p < 0.001), time receiving MV after tracheostomy (p < 0.001), and sedation durations. Similar results were also found in sub-population diagnosed as trauma, neurogenic or digestive disorders. Multinomial Logistic regression identified LT was independently associated with poor prognosis, whereas ET conferred no clinical benefits compared with IMT. CONCLUSIONS: In a mixed ICU population, delayed tracheostomy prolonged ICU and hospital stays, sedation durations, and time receiving MV. Multinomial logistic regression analysis identified delayed tracheostomies as independently correlated with worse outcomes. TRIAL REGISTRATION: ChiCTR2100043905. Registered 05 March 2021. http://www.chictr.org.cn/listbycreater.aspx.
Asunto(s)
Respiración Artificial , Traqueostomía , Humanos , Enfermedad Crítica , Estudios Retrospectivos , Centros de Atención Terciaria , ChinaRESUMEN
CAP1 (Cyclase-Associated Protein 1) is highly conserved in evolution. Originally identified in yeast as a bifunctional protein involved in Ras-adenylyl cyclase and F-actin dynamics regulation, the adenylyl cyclase component seems to be lost in mammalian cells. Prompted by our recent identification of the Ras-like small GTPase Rap1 as a GTP-independent but geranylgeranyl-specific partner for CAP1, we hypothesized that CAP1-Rap1, similar to CAP-Ras-cyclase in yeast, might play a critical role in cAMP dynamics in mammalian cells. In this study, we report that CAP1 binds and activates mammalian adenylyl cyclase in vitro, modulates cAMP in live cells in a Rap1-dependent manner, and affects cAMP-dependent proliferation. Utilizing deletion and mutagenesis approaches, we mapped the interaction of CAP1-cyclase with CAP's N-terminal domain involving critical leucine residues in the conserved RLE motifs and adenylyl cyclase's conserved catalytic loops (e.g., C1a and/or C2a). When combined with a FRET-based cAMP sensor, CAP1 overexpression-knockdown strategies, and the use of constitutively active and negative regulators of Rap1, our studies highlight a critical role for CAP1-Rap1 in adenylyl cyclase regulation in live cells. Similarly, we show that CAP1 modulation significantly affected cAMP-mediated proliferation in an RLE motif-dependent manner. The combined study indicates that CAP1-cyclase-Rap1 represents a regulatory unit in cAMP dynamics and biology. Since Rap1 is an established downstream effector of cAMP, we advance the hypothesis that CAP1-cyclase-Rap1 represents a positive feedback loop that might be involved in cAMP microdomain establishment and localized signaling.
Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/química , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fase G1/efectos de los fármacos , Isoenzimas/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Fase S/efectos de los fármacos , Tirotropina/farmacología , Proteínas de Unión al GTP rap1/metabolismoRESUMEN
PURPOSE: The purpose of this study was to compare clinical scores and imaging outcomes of bony Bankart lesions that underwent single-point and modified double-pulley fixation after at least 2 years of follow-up. METHODS: Patients who underwent surgery to treat bony Bankart injuries were included and divided into groups A and B. A total of 69 patients were included (32 in group A and 37 in group B). Patients in group A underwent arthroscopic modified double-pulley fixation and patients in group B underwent arthroscopic single-point fixation. Three-dimensional computed tomography (3D-CT) was used to assess glenoid reduction one day after surgery. Postoperative bony union was assessed using 3D-CT and multiplanar reconstruction images 6 months after surgery. Constant-Murley, Rowe rating system, visual analogue scale and University of California at Los Angeles and American Shoulder and Elbow Surgeons scores were recorded before and after surgery. RESULTS: In terms of imaging measurements, there was no significant group difference in the preoperative size of the glenoid defect, the size of the bony fragment or the expected postoperative size of the glenoid defect. The sizes of the actual postoperative glenoid defects differed significantly between the groups (p = 0.027), as did the absolute difference between the expected and actual glenoid defect sizes (p < 0.001). At 6 months postoperatively, 50.0% of group A patients and 24.3% of group B patients exhibited complete bony union (p = 0.027); the rates of partial union were 37.5% and 56.8%, respectively. At the final follow-up, all clinical scores were significantly better than the preoperative scores (all p < 0.05), with no significant group differences (not significant). CONCLUSIONS: The use of the modified double-pulley technique with two anchors to treat bony Bankart injuries provides a better reduction of bone fragments than single-point fixation with two anchors and was associated with a higher rate of early bone union. LEVEL OF EVIDENCE: Level III.
Asunto(s)
Artroscopía , Lesiones de Bankart , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Adulto , Artroscopía/métodos , Lesiones de Bankart/cirugía , Adulto Joven , Imagenología Tridimensional , Resultado del Tratamiento , Estudios Retrospectivos , Persona de Mediana Edad , Articulación del Hombro/cirugía , Articulación del Hombro/diagnóstico por imagen , Adolescente , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Estudios de SeguimientoRESUMEN
Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.
Asunto(s)
Estructuras Metalorgánicas , Fotoquimioterapia , Piroptosis , Apoptosis , Carbono , Cloruro de PoliviniloRESUMEN
BACKGROUND: Enhancing the response rate of immunotherapy will aid in the success of cancer treatment. Here, we aimed to explore the combined effect of immunogenic radiotherapy with anti-PD-L1 treatment in immunotherapy-resistant HNSCC mouse models. METHODS: The SCC7 and 4MOSC2 cell lines were irradiated in vitro. SCC7-bearing mice were treated with hypofractionated or single-dose radiotherapy followed by anti-PD-L1 therapy. The myeloid-derived suppressive cells (MDSCs) were depleted using an anti-Gr-1 antibody. Human samples were collected to evaluate the immune cell populations and ICD markers. RESULTS: Irradiation increased the release of immunogenic cell death (ICD) markers (calreticulin, HMGB1 and ATP) in SCC7 and 4MOSC2 in a dose-dependent manner. The supernatant from irradiated cells upregulated the expression of PD-L1 in MDSCs. Mice treated with hypofractionated but not single-dose radiotherapy were resistant to tumour rechallenge by triggering ICD, when combined with anti-PD-L1 treatment. The therapeutic efficacy of combination treatment partially relies on MDSCs. The high expression of ICD markers was associated with activation of adaptive immune responses and a positive prognosis in HNSCC patients. CONCLUSION: These results present a translatable method to substantially improve the antitumor immune response by combining PD-L1 blockade with immunogenic hypofractionated radiotherapy in HNSCC.
Asunto(s)
Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Células Supresoras de Origen Mieloide , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inmunoterapia/métodos , Células Supresoras de Origen Mieloide/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon but serious cause of community-acquired pneumonia (CAP). A lack of validated MRSA CAP risk factors can result in overuse of empirical broad-spectrum antibiotics. We sought to develop robust models predicting the risk of MRSA CAP using machine learning using a population-based sample of hospitalized patients with CAP admitted to either a tertiary academic center or a community teaching hospital. Data were evaluated using a machine learning approach. Cases were CAP patients with MRSA isolated from blood or respiratory cultures within 72 h of admission; controls did not have MRSA CAP. The Classification Tree Analysis algorithm was used for model development. Model predictions were evaluated in sensitivity analyses. A total of 21 of 1,823 patients (1.2%) developed MRSA within 72 h of admission. MRSA risk was higher among patients admitted to the intensive care unit (ICU) in the first 24 h who required mechanical ventilation than among ICU patients who did not require ventilatory support (odds ratio [OR], 8.3; 95% confidence interval [CI], 2.4 to 32). MRSA risk was lower among patients admitted to ward units than among those admitted to the ICU (OR, 0.21; 95% CI, 0.07 to 0.56) and lower among ICU patients without a history of antibiotic use in the last 90 days than among ICU patients with antibiotic use in the last 90 days (OR, 0.03; 95% CI, 0.002 to 0.59). The final machine learning model was highly accurate (receiver operating characteristic [ROC] area = 0.775) in training and jackknife validity analyses. We identified a relatively simple machine learning model that predicted MRSA risk in hospitalized patients with CAP within 72 h postadmission.
Asunto(s)
Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Infecciones Estafilocócicas , Humanos , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Neumonía Estafilocócica/tratamiento farmacológico , Antibacterianos/uso terapéutico , Curva ROC , Unidades de Cuidados Intensivos , Infecciones Estafilocócicas/tratamiento farmacológico , Factores de Riesgo , Infección Hospitalaria/tratamiento farmacológicoRESUMEN
Rheumatoid arthritis (RA) is an autoimmune disease that exhibits a high degree of heterogeneity, marked by unpredictable disease flares and significant variations in the response to available treatments. The lack of optimal stratification for RA patients may be a contributing factor to the poor efficacy of current treatment options. The objective of this study is to elucidate the molecular characteristics of RA through the utilization of mitochondrial genes and subsequently construct and authenticate a diagnostic framework for RA. Mitochondrial proteins were obtained from the MitoCarta database, and the R package limma was employed to filter for differentially expressed mitochondrial genes (MDEGs). Metascape was utilized to perform enrichment analysis, followed by an unsupervised clustering algorithm using the ConsensuClusterPlus package to identify distinct subtypes based on MDEGs. The immune microenvironment, biological pathways, and drug response were further explored in these subtypes. Finally, a multi-biomarker-based diagnostic model was constructed using machine learning algorithms. Utilizing 88 MDEGs present in transcript profiles, it was possible to classify RA patients into three distinct subtypes, each characterized by unique molecular and cellular signatures. Subtype A exhibited a marked activation of inflammatory cells and pathways, while subtype C was characterized by the presence of specific innate lymphocytes. Inflammatory and immune cells in subtype B displayed a more modest level of activation (Wilcoxon test P < 0.05). Notably, subtype C demonstrated a stronger correlation with a superior response to biologics such as infliximab, anti-TNF, rituximab, and methotrexate/abatacept (P = 0.001) using the fisher test. Furthermore, the mitochondrial diagnosis SVM model demonstrated a high degree of discriminatory ability in distinguishing RA in both training (AUC = 100%) and validation sets (AUC = 80.1%). This study presents a pioneering analysis of mitochondrial modifications in RA, offering a novel framework for patient stratification and potentially enhancing therapeutic decision-making.
Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Inhibidores del Factor de Necrosis Tumoral , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Mitocondrias , InfliximabRESUMEN
Nonlocality arising in networks composed of several independent sources gives rise to phenomena radically different from that in standard Bell scenarios. Over the years, the phenomenon of network nonlocality in the entanglement-swapping scenario has been well investigated and demonstrated. However, it is known that violations of the so-called bilocality inequality used in previous experimental demonstrations cannot be used to certify the nonclassicality of their sources. This has put forward a stronger concept for nonlocality in networks, called full network nonlocality. Here, we experimentally observe full network nonlocal correlations in a network where the source-independence, locality, and measurement-independence loopholes are closed. This is ensured by employing two independent sources, rapid setting generation, and spacelike separations of relevant events. Our experiment violates known inequalities characterizing nonfull network nonlocal correlations by over 5 standard deviations, certifying the absence of classical sources in the realization.
RESUMEN
Prostate cancer (PCa) is a prevalent malignant neoplasm affecting the male reproductive system globally. However, the diagnostic and therapeutic approaches fall short of meeting the demands posed by PCa. Poor expression of miRNA-203 (miR-203) within PCa tissues and cells implies its potential utility as a diagnostic indicator for PCa. Exosomes (Exo), membranous vesicles released by various cells, are rich reservoirs of miRNAs. However, the presence of miR-203 presents within Exo derived from PCa cells remains unclarified. In this study, Exo was isolated from urine specimens collected from clinical PCa patients and LNCaP cells to detect miR-203 expression. Meanwhile, the impact of overexpressed miR-203 on M0 macrophages (mø) was analyzed. Subsequently, alterations in the proliferative, migratory, and invasive capacities of LNCaP cells were examined within a co-culture system featuring elevated miR-203 levels in both macrophages and LNCaP cells. Furthermore, the repercussions of miR-203 upregulation or inhibition were explored in a murine PCa tumor model. The results revealed that Exo manifested a circular or elliptical morphology, encapsulating a phospholipid bilayer approximately 100 nm in diameter. Notably, Exo readily infiltrated, with both Exo and miR-203-overexpressing Exo prompting macrophage polarization toward the M1 subtype. In the co-culture system, miR-203 exhibited pronounced suppression of LNCaP cell proliferation, migration, and invasion, while concurrently fostering apoptosis as compared with the LNCaP group (Control). In vivo experiments further disclosed that miR-203 greatly inhibited the growth of PCa tumors in nude mice. Markedly heightened expression of M1 macrophage markers such as IL-1ß, IL-6, IL-12, CXCL9, and CXCL10 was observed within the tumor microenvironment following miR-203 intervention, as opposed to the model group. However, the introduction of miR-203 antagomir led to a reversal in tumor growth trends. This investigation indicates the presence of miR-203 within the urine of PCa patients and Exo originating from cells, and that miR-203 exerted antitumor effect by facilitating M1 macrophage polarization. Our study furnishes valuable insights into the potential applicability of miR-203 as a diagnostic biomarker and therapeutic target for PCa.
RESUMEN
Two strains (NYNU 218101 and NYNU 218104) of an asexual yeast species were isolated from insect frass collected in insect tunnels of red leaf plum trees in the Henan Province, central China. Molecular phylogenetic analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region showed that these two strains belonged to the genus Danielozyma, with Danielozyma litseae as the closest known species. They differed from the type strain of D. litseae by 0.6â% substitutions (three substitutions and one gap) in the D1/D2 domain and by 5.1â% substitutions (19 substitutions and six gaps) in the ITS region, respectively. When compared with the partial ACT1, TEF1 and RPB1 gene sequences, they differed by 3â% (26 substitutions), 2.7â% (25 substitutions) and 9â%(54 substitutions) from D. litseae NRRL YB-3246T in these regions. Physiologically, they also differed from its closest known species D. litseae based on the ability to assimilate inulin and galactitol, as well as to grow in 0.1â% cycloheximide and its inability to ferment maltose and raffinose. In order to classify the two new isolates based on morphological and molecular evidence, we proposed the description of a novel species Danielozyma pruni sp. nov. with strain JCM 35735T as holotype (Mycobank MB 849101).