Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119311

RESUMEN

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Proc Natl Acad Sci U S A ; 120(34): e2302901120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590408

RESUMEN

Abscisic acid (ABA), a classical plant hormone, plays an essential role in plant adaptation to environmental stresses. The ABA signaling mechanisms have been extensively investigated, and it was shown that the PYR1 (PYRABACTIN RESISTANCE1)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) ABA receptors, the PP2C coreceptors, and the SnRK2 protein kinases constitute the core ABA signaling module responsible for ABA perception and initiation of downstream responses. We recently showed that ABA signaling is modulated by light signals, but the underlying molecular mechanisms remain largely obscure. In this study, we established a system in yeast cells that was not only successful in reconstituting a complete ABA signaling pathway, from hormone perception to ABA-responsive gene expression, but also suitable for functionally characterizing the regulatory roles of additional factors of ABA signaling. Using this system, we analyzed the roles of several light signaling components, including the red and far-red light photoreceptors phytochrome A (phyA) and phyB, and the photomorphogenic central repressor COP1, in the regulation of ABA signaling. Our results showed that both phyA and phyB negatively regulated ABA signaling, whereas COP1 positively regulated ABA signaling in yeast cells. Further analyses showed that photoactivated phyA interacted with the ABA coreceptors ABI1 and ABI2 to decrease their interactions with the ABA receptor PYR1. Together, data from our reconstituted yeast ABA signaling system provide evidence that photoactivated photoreceptors attenuate ABA signaling by directly interacting with the key components of the core ABA signaling module, thus conferring enhanced ABA tolerance to light-grown plants.


Asunto(s)
Fitocromo A , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Fototransducción
3.
Plant Cell ; 34(6): 2286-2308, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35263433

RESUMEN

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a well-characterized E3 ubiquitin ligase, is a central repressor of seedling photomorphogenic development in darkness. However, whether COP1 is involved in modulating abscisic acid (ABA) signaling in darkness remains largely obscure. Here, we report that COP1 is a positive regulator of ABA signaling during Arabidopsis seedling growth in the dark. COP1 mediates ABA-induced accumulation of ABI5, a transcription factor playing a key role in ABA signaling, through transcriptional and post-translational regulatory mechanisms. We further show that COP1 physically interacts with ABA-hypersensitive DCAF1 (ABD1), a substrate receptor of the CUL4-DDB1 E3 ligase targeting ABI5 for degradation. Accordingly, COP1 directly ubiquitinates ABD1 in vitro, and negatively regulates ABD1 protein abundance in vivo in the dark but not in the light. Therefore, COP1 promotes ABI5 protein stability post-translationally in darkness by destabilizing ABD1 in response to ABA. Interestingly, we reveal that ABA induces the nuclear accumulation of COP1 in darkness, thus enhancing its activity in propagating the ABA signal. Together, our study uncovers that COP1 modulates ABA signaling during seedling growth in darkness by mediating ABA-induced ABI5 accumulation, demonstrating that plants adjust their ABA signaling mechanisms according to their light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Plant Cell ; 34(1): 633-654, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741605

RESUMEN

Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fitocromo A/genética , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 299(1): 102775, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493904

RESUMEN

Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.


Asunto(s)
Neuritas , Fosfatos de Fosfatidilinositol , Humanos , Endosomas/metabolismo , Neuritas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo
6.
J Am Chem Soc ; 146(5): 2901-2906, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38271666

RESUMEN

Macrocyclic arenes have emerged as pivotal scaffolds in supramolecular chemistry. Despite their significant contributions to molecular recognition and diverse applications, challenges persist in the development of macrocyclic arene-based crystalline materials, particularly in achieving porosity and addressing limitations in adsorption efficiency resulting from the small cavity sizes of existing macrocyclic arenes. In this study, we present the design and synthesis of a novel macrocyclic arene, clamparene (CLP), featuring a rigid backbone, easy synthesis, and a sizable cavity. CLP self-assembles into one-dimensional sub-nanotubes that further organize into a three-dimensional porous framework in the solid state. The crystalline solid of CLP exhibits potential as a porous crystalline adsorbent for various benzene-based contaminants with rapid adsorption kinetics, large uptake amounts, and good recyclability.

7.
EMBO J ; 39(13): e103630, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449547

RESUMEN

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Temperatura , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocótilo/genética , Transactivadores/genética
8.
Anal Chem ; 96(24): 10056-10063, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38832555

RESUMEN

The identification of single nucleotide polymorphisms (SNPs) is of paramount importance for disease diagnosis and clinical prognostication. In the context of nonsmall cell lung cancer (NSCLC), the emergence of resistance mutations, exemplified by the epidermal growth factor receptor (EGFR) T790 M and C797S, is intricately linked to the therapeutic efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Herein, a highly efficient and specific SNP detection platform for T790 M and C797S mutations has been engineered through the integration of an asymmetric polymerase chain reaction (PCR) and an ingeniously tailored four-way junction (4WJ) probe. Notably, a molecular beacon (MB) probe was judiciously designed to discern the allelic configuration of these mutations. The administration of first- and third-generation EGFR-TKIs demonstrates therapeutic efficacy solely when the mutations are in the trans configuration, characterized by a low fluorescence signal. In contrast, significant fluorescence by the MB probe is indicative of the C797S mutation being in a cis arrangement with T790M, thereby rendering the cells refractory to the therapeutic interventions of both first- and third-generation EGFR-TKIs. The assay is capable of concurrently detecting two point-mutations and ascertaining their allelic positions in a single test within 1.5 h, enhancing both efficiency and simplicity. It also exhibits high accuracy in the identification of clinical samples, offering promising implications for therapeutic guidelines. By enabling tailored treatment plans based on specific genetic profiles, our approach not only advances the precision of NSCLC treatment strategies but also marks a significant contribution to personalized medicine.


Asunto(s)
Alelos , Receptores ErbB , Mutación , Inhibidores de Proteínas Quinasas , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Polimorfismo de Nucleótido Simple , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico
9.
Am J Drug Alcohol Abuse ; 50(2): 207-217, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38386811

RESUMEN

Background: Numerous studies have highlighted the pivotal role of alterations in the monetary reward system in the development and maintenance of substance use disorder (SUD). Although these alterations have been well documented in various forms of SUD, the electrophysiological mechanisms specific to opioid use disorder (OUD) remain underexplored. Understanding these mechanisms is critical for developing targeted interventions and advancing theories of addiction specific to opioid use.Objectives: To explore abnormalities in monetary reward outcome processing in males with OUD. We hypothesized that control individuals would show higher feedback-related negativity (FRN) to losses, unlike those in the OUD group, where FRN to losses and gains would not differ significantly.Methods: Fifty-seven participants (29 male individuals with OUD [heroin] and 28 male controls) were evaluated. A combination of the monetary incentive delay task (MIDT) and event-related potential (ERP) technology was used to investigate electrophysiological differences in monetary reward feedback processing between the OUD and healthy control groups.Results: We observed a significant interaction between group (control vs. OUD) and monetary outcome (loss vs. gain), indicated by p < .05 and η2p = 0.116. Specifically, control participants showed stronger negative FRN to losses than gains (p < .05), unlike the OUD group (p > .05).Conclusion: This study's FRN data indicate that males with OUD show altered processing of monetary rewards, marked by reduced sensitivity to loss. These findings offer electrophysiological insights into why males with OUD may pursue drugs despite potential economic downsides.


Asunto(s)
Potenciales Evocados , Trastornos Relacionados con Opioides , Recompensa , Humanos , Masculino , Adulto , Trastornos Relacionados con Opioides/fisiopatología , Potenciales Evocados/fisiología , Estudios de Casos y Controles , Electroencefalografía , Adulto Joven , Motivación , Retroalimentación Psicológica/fisiología
10.
Anal Chem ; 95(48): 17808-17817, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37972997

RESUMEN

The timely detection of diseases and the accurate identification of pathogens require the development of efficient and reliable diagnostic methods. In this study, we have developed a novel specific multivariate probe termed MRTFP (multivariate real-time fluorescent probe) by assembling strand exchange three-way-junction (3WJ) structures. The 3WJ structures were incorporated into a four-angle probe (FP) and a hexagonal probe (HP), to target the multivariate genes of Salmonella. The FP and HP enable single-step and multiplexed detection in RT-LAMP (real-time loop-mediated isothermal amplification) with exceptional sensitivity and specificity. Encouragingly, real food samples contaminated with Salmonella (Salmonella enteritidis and Salmonella typhimurium) can be readily identified and distinguished with a minimum detectable concentration (MDC) of 103 CFU/mL without the need for further culture. The introduction of MRTFP allows for simultaneous detection of dual or three targets in a single tube for LAMP, thereby improving detection efficiency. The MRTFP simplifies the design of robust multivariate probes, exhibits excellent stability, and avoids interference from multiple probe units, offering significant potential for the development of specific probes for efficient and accurate disease detection and pathogen identification.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Salmonella typhimurium , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Salmonella typhimurium/genética , Salmonella enteritidis/genética
11.
Anal Chem ; 95(15): 6433-6440, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37026469

RESUMEN

Although promising in monitoring low-abundance analytes, most of the DNAzyme walker is only responsive to a specific target. Herein, a universal, ready-to-use platform is developed by coupling nicking-enhanced rolling circle amplification and a self-powered DNAzyme walker (NERSD). It addressed the issues that DNAzyme strands need to be specifically designed for different biosensing system, allowing highly sensitive analysis of various targets with the same DNAzyme walker components. It is also specific owing to target-dependent ligation of the padlock probe and precise cleavage of a substrate by a DNAzyme strand. As typically demonstrated, the strategy has an equivalent capacity with the qRT-PCR kit in distinguishing plasma miR-21 levels of breast cancer patients from normal subjects and is able to differentiate intracellular miR-21 and ATP levels by confocal imaging. The approach characteristic of programmability, flexibility, and generality indicated the potential in all kinds of biosensing and imaging platform.


Asunto(s)
ADN Catalítico , Diagnóstico por Imagen , MicroARNs , Humanos , Diagnóstico por Imagen/métodos , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/análisis
12.
Plant Cell ; 32(7): 2196-2215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371543

RESUMEN

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants, and PHYTOCHROME-INTERACTING FACTORS (PIFs) are a group of basic helix-loop-helix family transcription factors that play central roles in repressing photomorphogenesis. Here, we report that MYB30, an R2R3-MYB family transcription factor, acts as a negative regulator of photomorphogenesis in Arabidopsis (Arabidopsis thaliana). We show that MYB30 preferentially interacts with the Pfr (active) forms of the phytochrome A (phyA) and phytochrome B (phyB) holoproteins and that MYB30 levels are induced by phyA and phyB in the light. It was previously shown that phytochromes induce rapid phosphorylation and degradation of PIFs upon R light exposure. Our current data indicate that MYB30 promotes PIF4 and PIF5 protein reaccumulation under prolonged R light irradiation by directly binding to their promoters to induce their expression and by inhibiting the interaction of PIF4 and PIF5 with the Pfr form of phyB. In addition, our data indicate that MYB30 interacts with PIFs and that they act additively to repress photomorphogenesis. In summary, our study demonstrates that MYB30 negatively regulates Arabidopsis photomorphogenic development by acting to promote PIF4 and PIF5 protein accumulation under prolonged R light irradiation, thus providing new insights into the complicated but delicate control of PIFs in the responses of plants to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Plantones/fisiología , Factores de Transcripción/genética
13.
Anal Chem ; 94(2): 600-605, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34920663

RESUMEN

The present detection method for hepatitis B virus (HBV) drug-resistant mutation has a high misdiagnosis rate and usually needs to meet stringent requirements for technology and equipment, leading to complex and time-consuming manipulation and drawback of high costs. Herein, with the purpose of developing cost-effective, highly efficient, and handy diagnosis for HBV drug-resistant mutants, we propose an electrochemical signal-on strategy through the three-way junction (3WJ) transduction and exonuclease III (Exo III)-assisted catalyzed hairpin assembly (CHA). To achieve single-copy gene detection, loop-mediated nucleic acid isothermal amplification (LAMP), one of the highly promising and compatible techniques to revolutionize point-of-care genetic detection, is first adopted for amplification. The rtN236T mutation, an error encoded by codon 236 of the reverse transcriptase region of HBV DNA, was employed as the model gene target. Under the optimized conditions, it allows end-point transduction from HBV drug-resistant mutants-genomic information to electrochemical signals with ultrahigh sensitivity, specificity, and signal-to-noise ratio, showing the lowest detection concentration down to 2 copies/µL. Such a method provides a possibly new principle for ideal in vitro diagnosis, supporting the construction of a clinic HBV diagnosis platform with high accuracy and generalization. Moreover, it is not restricted by specific nucleic acid sequences but can be applied to the detection of various disease genes, laying the foundation for multiple detection.


Asunto(s)
Técnicas Biosensibles , Virus de la Hepatitis B , Técnicas Biosensibles/métodos , Catálisis , ADN/genética , Exodesoxirribonucleasas , Virus de la Hepatitis B/genética , Técnicas de Amplificación de Ácido Nucleico/métodos
14.
Environ Sci Technol ; 56(23): 16695-16706, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399649

RESUMEN

Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement-based emission inventory to quantify the mobile source S/IVOC-induced SOA (MS-SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS-SI-SOA was up to 0.6 ± 0.3 µg/m3. High concentrations of MS-SI-SOA were detected in autumn, while the notable relative contribution of MS-SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 ± 10% in Shanghai. MS-SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS-SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Emisiones de Vehículos/análisis , Aerosoles/análisis , China , Estaciones del Año , Contaminantes Atmosféricos/análisis
15.
J Integr Plant Biol ; 64(2): 393-411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34984823

RESUMEN

As two of the most important environmental factors, light and temperature regulate almost all aspects of plant growth and development. Under natural conditions, light is accompanied by warm temperatures and darkness by cooler temperatures, suggesting that light and temperature are tightly associated signals for plants. Indeed, accumulating evidence shows that plants have evolved a wide range of mechanisms to simultaneously perceive and respond to dynamic changes in light and temperature. Notably, the photoreceptor phytochrome B (phyB) was recently shown to function as a thermosensor, thus reinforcing the notion that light and temperature signaling pathways are tightly associated in plants. In this review, we summarize and discuss the current understanding of the molecular mechanisms integrating light and temperature signaling pathways in plants, with the emphasis on recent progress in temperature sensing, light control of plant freezing tolerance, and thermomorphogenesis. We also discuss the questions that are crucial for a further understanding of the interactions between light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo B/metabolismo , Plantas/metabolismo , Transducción de Señal , Temperatura
16.
Angew Chem Int Ed Engl ; 61(12): e202115907, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35064613

RESUMEN

Desirable biosensing assays need to be sensitive, specific, cost-effective, instrument-free, and versatile. Herein we report a new strategy termed CLIPON (CRISPR and Large DNA assembly Induced Pregnancy strips for signal-ON detection) that can deliver these traits. CLIPON integrates a commercial pregnancy test strip (PTS) with four biological elements: the human chorionic gonadotropin (hCG), CRISPR-Cas12a, crRNA and cauliflower-like large-sized DNA assemblies (CLD). CLIPON uses the Cas12a/crRNA complex both to recognize a target of interest and to release CLD-bound hCG so that target presence can translate into a colorimetric signal on the PTS. We demonstrate the versatility of CLIPON through sensitive and specific detection of HPV genomic DNA, SARS-CoV-2 genomic RNA and adenosine. We also engineer a cell phone app and a hand-held microchip to achieve signal quantification. CLIPON represents an attractive option for biosensing and point-of-care diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Pruebas en el Punto de Atención , Pruebas de Embarazo , ADN/análisis , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Embarazo , ARN Viral/análisis , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad , Virus/aislamiento & purificación
17.
Anal Chem ; 93(35): 11956-11964, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34424659

RESUMEN

Coronavirus diseases such as the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose serious threats. Portable and accurate nucleic acid detection is still an urgent need to achieve on-site virus screening and timely infection control. Herein, we have developed an on-site, semiautomatic detection system, aiming at simultaneously overcoming the shortcomings suffered by various commercially available assays, such as low accuracy, poor portability, instrument dependency, and labor intensity. Ultrasensitive isothermal amplification [i.e., reverse transcription loop-mediated isothermal amplification (RT-LAMP)] was applied to generate intensified SARS-CoV-2 RNA signals, which were then transduced to portable commercial pregnancy test strips (PTSs) via ultraspecific human chorionic gonadotropin (hCG)-conjugated toehold-mediated strand exchange (TMSE) probes (hCG-P). The entire detection was integrated into a four-channel, palm-size microfluidic device, named the microfluidic point-of-care (POC) diagnosis system based on the PTS (MPSP) detection system. It provides rapid, cost-effective, and sensitive detection, of which the lowest concentration of detection was 0.5 copy/µL of SARS-CoV-2 RNA, regardless of the presence of other similar viruses, even highly similar severe acute respiratory syndrome coronavirus (SARS-CoV). The successful detection of the authentic samples from different resources evaluated the practical application. The commercial PTS provides a colorimetric visible signal, which is instrument- and optimization-free. Therefore, this MPSP system can be immediately used for SARS-CoV-2 emergency detection, and it is worthy of further optimization to achieve full automation and detection for other infectious diseases.


Asunto(s)
COVID-19 , Pruebas de Embarazo , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , Embarazo , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
18.
Angew Chem Int Ed Engl ; 60(47): 24823-24827, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34432346

RESUMEN

There is a constant drive for affordable point-of-care testing (POCT) technologies for the detection of infectious human diseases. Herein, we report a simple platform for DNA detection that takes advantage of four techniques: commercially available pregnancy test strips (PTS), amplicon generation via loop-mediated isothermal amplification (LAMP), toehold-mediated strand displacement, and noncovalent immobilization of DNA on paper surface with DNA nanoflowers. This simple, separation-free platform is highly specific, as demonstrated with the detection of rtL180M, a single-nucleotide polymorphism observed in hepatitis B virus (HBV) associated with antiviral drug resistance. It is very sensitive, capable of detecting the targeted mutation at 2 copies µL-1 . It is able to correctly identify the unmutated and rtL180M genome types of HBV in clinical samples. Given its wide adaptability, we expect this platform can be easily modified for the detection of genetic variations associated with various pathogens and human diseases.


Asunto(s)
ADN/análisis , Nanopartículas/química , Femenino , Humanos , Embarazo , Pruebas de Embarazo , Sensibilidad y Especificidad
20.
Proc Natl Acad Sci U S A ; 114(32): E6695-E6702, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739888

RESUMEN

Light and temperature are major environmental factors that coordinately control plant growth and survival. However, how plants integrate light and temperature signals to better adapt to environmental stresses is poorly understood. PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor repressing photomorphogenesis, has been shown to play a pivotal role in mediating plants' responses to various environmental signals. In this study, we found that PIF3 functions as a negative regulator of Arabidopsis freezing tolerance by directly binding to the promoters of C-REPEAT BINDING FACTOR (CBF) genes to down-regulate their expression. In addition, two F-box proteins, EIN3-BINDING F-BOX 1 (EBF1) and EBF2, directly target PIF3 for 26S proteasome-mediated degradation. Consistently, ebf1 and ebf2 mutants were more sensitive to freezing than were the wild type, and the pif3 mutation suppressed the freezing-sensitive phenotype of ebf1 Furthermore, cold treatment promoted the degradation of EBF1 and EBF2, leading to increased stability of the PIF3 protein and reduced expression of the CBF genes. Together, our study uncovers an important role of PIF3 in Arabidopsis freezing tolerance by negatively regulating the expression of genes in the CBF pathway.


Asunto(s)
Aclimatación/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Congelación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA