Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6471-6475, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428039

RESUMEN

Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.

2.
J Am Chem Soc ; 146(26): 17700-17711, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888499

RESUMEN

Harnessing mechanical force to modulate material properties and enhance biomechanical functions is essential for advancing smart materials and bioengineering. Polymer mechanochemistry provides an emerging toolkit for exploring unconventional chemical transformations and modulating molecular structures through mechanical force. One of the key challenges is developing innovative force-sensing mechanisms for precise and in situ force detection. This study introduces mDPAC, a dynamic and sensitive mechanophore, demonstrating its mechanochromic properties through synergetic conformational gearing. Its unique mechanoresponsive mechanism is based on the simultaneous conformational synergy between its phenazine and phenyl moieties, facilitated by a worm-gear-like structure. We confirm mDPAC's complex mechanochemical response and elucidate its mechanotransduction mechanism through our experimental data and comprehensive simulations. The compatibility of mDPAC with hydrogels is particularly notable, highlighting its potential for applications in aqueous biological environments as a dynamic force sensor. Moreover, mDPAC's multicolored mechanochromic responses facilitate direct force sensing and visual detection, paving the way for precise and real-time mechanical force sensing in bulk materials.

3.
J Am Chem Soc ; 143(42): 17337-17343, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34586805

RESUMEN

A near-infrared (NIR) mechanophore was developed and incorporated into a poly(methyl acrylate) chain to showcase the first force-induced NIR chromism in polymeric materials. This mechanophore, based on benzo[1,3]oxazine (OX) fused with a heptamethine cyanine moiety, exhibited NIR mechanochromism in solution, thin-film, and bulk states. The mechanochemical activity was validated using UV-vis-NIR absorption/fluorescence spectroscopies, gel permeation chromatography (GPC), NMR, and DFT simulations. Our work demonstrates that NIR mechanochromic polymers have considerable potential in mechanical force sensing, damage detection, bioimaging, and biomechanics.

4.
J Am Chem Soc ; 142(14): 6777-6785, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182060

RESUMEN

Photoinduced electron transfer (PET) is one of the most important mechanisms for developing fluorescent probes and biosensors. Quantitative prediction of the quantum yields of these probes and sensors is crucial to accelerate the rational development of novel PET-based functional materials. Herein, we developed a general descriptor (ΔE) for predicting the quantum yield of PET probes, with a threshold value of ∼0.6 eV. When ΔE < ∼0.6 eV, the quantum yield is low (mostly <2%) due to the substantial activation of PET in polar environments; when ΔE > ∼0.6 eV, the quantum yield is high because of the inhibition of PET. This simple yet effective descriptor is applicable to a wide range of fluorophores, such as BODIPY, fluorescein, rhodamine, and Si-rhodamine. This ΔE descriptor enables us not only to establish new applications for existing PET probes but also to quantitatively design novel PET-based fluorophores for wash-free bioimaging and AIEgen development.

5.
J Am Chem Soc ; 139(45): 16036-16039, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29045132

RESUMEN

Solid-state organic photoswitches with reversible luminescence modulation property are highly attractive because of their wide prospects in advanced photonic applications, such as optical data storage, anticounterfeiting and bioimaging. Yet, developing such materials has long been a significant challenge. In this work, we construct an efficient solid-state photoswitch based on a spiropyran-functionalized distyrylanthracene derivative (DSA-2SP) that exhibits exceptional reversible absorption/luminescence modulation ability. Efficient photoswitching between DSA-2SP and its photoisomer DSA-2MC are facilitated by large free volumes induced by nonplanar molecular structures of DSA moieties, as well as the intramolecular hydrogen bonds between the DSA and MC moieties. Consequently, the excellent solid-state photochromic property of DSA-2SP is highly applicable as both anticounterfeiting inks and super-resolution imaging agents.

6.
Chemistry ; 21(3): 1149-55, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25400087

RESUMEN

Two tetraphenylethene (TPE)-functionalized spiropyran (SP) molecules with very similar structure were designed and synthesized. The two molecules exhibit aggregation-induced emission (AIE) properties, as well as multistimuli-responsive color-changing properties, such as photochromism and acidchromism. The investigation of their different photochromic and acidchromic characteristics and dual-response fluorescent switch during isomerization indicated that the different link position between TPE and SP will significantly affect the extended π-conjugated system, resulting in completely different photochromic and acidchromic properties.

7.
J Phys Chem A ; 119(35): 9218-24, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26262432

RESUMEN

During the past decade, luminescent mechanochromism has received much attention. Despite the garnered attention, only a few studies have reported the effect of internal molecular structure change on the performance of mechanochromic fluorescence. Here, we chose tetra(4-methoxyphenyl)ethylene (TMOE) as a model molecule to study the correlation between structure and fluorescence property under a hydrostatic pressure produced by a diamond anvil cell (DAC). TMOE is a methoxy-substituted tetraphenylethylene (TPE) derivative and has a nearly centrosymmetric structure and a natural propeller shape. Ultraviolet-visible absorption and fluorescence spectra of TMOE and TPE in solution proved that the presence of methoxy groups in TMOE is responsible for the difference in fluorescence emissions of TMOE and TPE. Under a hydrostatic pressure, the in situ fluorescence spectra of TMOE at different concentrations show that the fluorescence intensity gradually weakens, accompanied by an obvious redshift. The Raman peak intensities decrease gradually, and the peaks disappear eventually with the pressure increasing. These spectral changes are attributed to the changes in the intramolecular conformation, that is, the strengthening of the weak C-H···O hydrogen bonds in TMOE molecules, which is caused by the twisted dihedral angle between the benzene ring and the carbon rigid plane of ethylene. Density functional theory simulation further confirms that the decreased dihedral angle could weaken Raman peak intensity, which is consistent with our experimental results.

8.
Chem Sci ; 14(41): 11359-11364, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886079

RESUMEN

We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.

9.
Chem Commun (Camb) ; 55(26): 3749-3752, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30860528

RESUMEN

Herein, we provide a direct observation of the modulation of the excited state transition under mechanical and thermal stimuli in the solid state by two organic polymorphs based on a tetraphenylethene derivative (APMOB). It enriches the insight in the research of stimuli responsive luminescent materials.

10.
Chem Commun (Camb) ; 55(10): 1446-1449, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30644468

RESUMEN

Rhodamine B-naphthalimide (RhB-Naph) demonstrated a distinct aggregation-induced emission (AIE) mechanism, different from the restriction of intramolecular rotations or vibrations as in traditional AIE molecules. The monomers of RhB-Naph were non-emissive, due to the presence of a dark S1 state. Upon molecular aggregation, intermolecular interactions significantly altered the electronic properties of RhB-Naph, leading to the formation of a bright S1 state and endowing RhB-Naph with notable AIE properties. Besides, we demonstrated that RhB-Naph enabled the development of a solid-state three-color fluorescent switch upon multi-external stimuli.

11.
Chem Sci ; 10(18): 4914-4922, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31160962

RESUMEN

Rhodamine spirolactam based photoswitches have been extensively applied in super-resolution single-molecule localization microscopy (SMLM). However, the ring-opening reactions of spirolactams are cross-sensitive to acid, limiting their photoswitch use to neutral pH conditions. In addition, the ring-closing reactions of spirolactams are environment-sensitive and slow (up to hours), virtually making rhodamine spirolactams caged fluorescent dyes instead of reversible photoswitches in SMLM. Herein, by introducing hydrogen bonds to stabilize spirolactams, we report a series of acid-resistant rhodamine spirolactams with accelerated ring-closing reactions from fluorescent xanthyliums to non-fluorescent spirolactams, endowing them with good photoswitchable properties even in acidic environments. By further substitution of 6-phenylethynyl naphthalimide on the spirolactam, we shifted the photoactivation wavelength into the visible region (>400 nm). Subsequently, we have successfully applied these dyes in labeling and imaging the cell surface of Bacillus subtilis at pH 4.5 using SMLM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA