Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacogenomics J ; 24(2): 8, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485921

RESUMEN

BACKGROUND: Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS: The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS: We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS: The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.


Asunto(s)
Medicamentos Herbarios Chinos , Interleucina-6 , Humanos , Simulación del Acoplamiento Molecular , Luteolina , Farmacología en Red , Hipoxia/tratamiento farmacológico , Hipoxia/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553975

RESUMEN

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Células Endoteliales , Pulmón , MicroARNs , ARN Largo no Codificante , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Células Endoteliales/metabolismo , Proliferación Celular/genética , MicroARNs/metabolismo , MicroARNs/genética , Movimiento Celular/genética , Animales , Pulmón/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Hipoxia de la Célula/fisiología , Ratas , Técnicas de Silenciamiento del Gen , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética
3.
Per Med ; 21(4): 227-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38940394

RESUMEN

High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema. In recent years, association studies have become the main method for identifying HAPE genetic loci. A genome-wide association study (GWAS) of HAPE risk-associated loci was performed in Chinese male Han individuals (164 HAPE cases and 189 healthy controls) by the Precision Medicine Diversity Array Chip with 2,771,835 loci (Applied Biosystems Axiom™). Eight overlapping candidate loci in CCNG2, RP11-445O3.2, NUPL1 and WWOX were finally selected. In silico functional analyses displayed the PPI network, functional enrichment and signal pathways related to CCNG2, NUPL1, WWOX and NRXN1. This study provides data supplements for HAPE susceptibility gene loci and new insights into HAPE susceptibility.


Asunto(s)
Mal de Altura , Pueblo Asiatico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Pueblo Asiatico/genética , China , Mal de Altura/genética , Polimorfismo de Nucleótido Simple/genética , Hipertensión Pulmonar/genética , Estudios de Casos y Controles , Sitios Genéticos/genética , Adulto , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA