Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(9): 2762-2779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35770732

RESUMEN

Cold stress resulting from chilling and freezing temperatures substantially inhibits plant growth and reduces crop production worldwide. Tremendous research efforts have been focused on elucidating the molecular mechanisms of freezing tolerance in plants. However, little is known about the molecular nature of chilling stress responses in plants. Here we found that two allelic mutants in a spliceosome component gene SmEb (smeb-1 and smeb-2) are defective in development and responses to chilling stress. RNA-seq analysis revealed that SmEb controls the splicing of many pre-messenger RNAs (mRNAs) under chilling stress. Our results suggest that SmEb is important to maintain proper ratio of the two COP1 splicing variants (COP1a/COP1b) to fine tune the level of HY5. In addition, the transcription factor BES1 shows a dramatic defect in pre-mRNA splicing in the smeb mutants. Ectopic expression of the two BES1 splicing variants enhances the chilling sensitivity of the smeb-1 mutant. Furthermore, biochemical and genetic analysis showed that CBFs act as negative upstream regulators of SmEb by directly suppressing its transcription. Together, our results demonstrate that proper alternative splicing of pre-mRNAs controlled by the spliceosome component SmEb is critical for plant development and chilling stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , ARN Mensajero/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328798

RESUMEN

Cold stress is one of the abiotic stress conditions that severely limit plant growth and development and productivity. Triacylglycerol lipases are important metabolic enzymes for the catabolism of triacylglycerols and, therefore, play important roles in cellular activities including seed germination and early seedling establishment. However, whether they play a role in cold stress responses remains unknown. In this study, we characterized two Arabidopsis triacylglycerol lipases, MPL1 and LIP1 and defined their role in cold stress. The expression of MPL1 and LIP1 is reduced by cold stress, suggesting that they may be negative factors related to cold stress. Indeed, we found that loss-of-function of MPL1 and LIP1 resulted in increased cold tolerance and that the mpl1lip1 double mutant displayed an additive effect on cold tolerance. We performed RNA-seq analysis to reveal the global effect of the mpl1 and lip1 mutations on gene expression under cold stress. The mpl1 mutation had a small effect on gene expression under both under control and cold stress conditions whereas the lip1 mutation caused a much stronger effect on gene expression under control and cold stress conditions. The mpl1lip1 double mutant had a moderate effect on gene expression under control and cold stress conditions. Together, our results indicate that MPL1 and LIP1 triacylglycerol lipases are negative regulators of cold tolerance without any side effects on growth in Arabidopsis and that they might be ideal candidates for breeding cold-tolerant crops through genome editing technology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Lipasa/genética , Lipasa/metabolismo , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantones/genética , Estrés Fisiológico/genética , Triglicéridos/metabolismo
3.
Nucleic Acids Res ; 46(4): 1777-1792, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29228330

RESUMEN

Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5' splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Empalme de ARN/fisiología , Tolerancia a la Sal/genética , Transporte Activo de Núcleo Celular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Empalmosomas/metabolismo
4.
Nat Commun ; 6: 8139, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404089

RESUMEN

The phytohormone abscisic acid (ABA) is important for growth, development and stress responses in plants. Recent research has identified ABA receptors and signalling components that regulate seed germination and stomatal closure. However, proteins that regulate ABA signalling remain poorly understood. Here we use a forward-genetic screen to identify rbm25-1 and rbm25-2, two Arabidopsis mutants with increased sensitivity to growth inhibition by ABA. Using RNA-seq, we found that RBM25 controls the splicing of many pre-mRNAs. The protein phosphatase 2C HAB1, a critical component in ABA signalling, shows a dramatic defect in pre-mRNA splicing in rbm25 mutants. Ectopic expression of a HAB1 complementary DNA derived from wild-type mRNAs partially suppresses the rbm25-2 mutant phenotype. We suggest that RNA splicing is of particular importance for plant response to ABA and that the splicing factor RBM25 has a critical role in this response.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Fosfoproteínas Fosfatasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , ARN Mensajero/metabolismo , Secuencias de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Isoleucina , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Prolina , Empalme del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Triptófano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA