Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(3): 033603, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540869

RESUMEN

Quantum illumination has been proposed and demonstrated to improve the signal-to-noise ratio (SNR) in light detection and ranging (LiDAR). When relying on coincidence detection alone, such a quantum LiDAR is limited by the timing jitter of the detector and suffers from jamming noise. Inspired by the Zou-Wang-Mandel experiment, we design, construct, and validate a quantum induced coherence (QuIC) LiDAR which is inherently immune to ambient and jamming noises. In traditional LiDAR the direct detection of the reflected probe photons suffers from deteriorating SNR for increasing background noise. In QuIC LiDAR we circumvent this obstacle by only detecting the entangled reference photons, whose single-photon interference fringes are used to obtain the distance of the object, while the reflected probe photons are used to erase path information of the reference photons. In consequence, the noise accompanying the reflected probe light has no effect on the detected signal. We demonstrate such noise resilience with both LED and laser light to mimic the background and jamming noise. The proposed method paves a new way of battling noise in precise quantum electromagnetic sensing and ranging.

2.
Light Sci Appl ; 11(1): 291, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210366

RESUMEN

Cold atoms provide a flexible platform for synthesizing and characterizing topological matter, where geometric phases play a central role. However, cold atoms are intrinsically prone to thermal noise, which can overwhelm the topological response and hamper promised applications. On the other hand, geometric phases also determine the energy spectra of particles subjected to a static force, based on the polarization relation between Wannier-Stark ladders and geometric Zak phases. By exploiting this relation, we develop a method to extract geometric phases from energy spectra of room-temperature superradiance lattices, which are momentum-space lattices of timed Dicke states. In such momentum-space lattices the thermal motion of atoms, instead of being a source of noise, provides effective forces which lead to spectroscopic signatures of the Zak phases. We measure Zak phases directly from the anti-crossings between Wannier-Stark ladders in the Doppler-broadened absorption spectra of superradiance lattices. Our approach paves the way of measuring topological invariants and developing their applications in room-temperature atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA