Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(3): e23457, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318648

RESUMEN

Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.


Asunto(s)
Anexina A1 , Presión Sanguínea , Remodelación Vascular , Animales , Ratones , Anexina A1/genética , Anexina A1/metabolismo , Cardiomegalia , Fibrosis , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Am J Physiol Heart Circ Physiol ; 324(2): H241-H257, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607798

RESUMEN

Left ventricular (LV) dysfunction is an early, clinically detectable sign of cardiomyopathy in type 2 diabetes mellitus (T2DM) that precedes the development of symptomatic heart failure. Preclinical models of diabetic cardiomyopathy are essential to develop therapies that may prevent or delay the progression of heart failure. This study examined the molecular, structural, and functional cardiac phenotype of two rat models of T2DM induced by a high-fat diet (HFD) with a moderate- or high-sucrose content (containing 88.9 or 346 g/kg sucrose, respectively), plus administration of low-dose streptozotocin (STZ). At 8 wk of age, male Sprague-Dawley rats commenced a moderate- or high-sucrose HFD. Two weeks later, rats received low-dose STZ (35 mg/kg ip for 2 days) and remained on their respective diets. LV function was assessed by echocardiography 1 wk before end point. At 22 wk of age, blood and tissues were collected postmortem. Relative to chow-fed sham rats, diabetic rats on a moderate- or high-sucrose HFD displayed cardiac reactive oxygen species dysregulation, perivascular fibrosis, and impaired LV diastolic function. The diabetes-induced impact on LV adverse remodeling and diastolic dysfunction was more apparent when a high-sucrose HFD was superimposed on STZ. In conclusion, a high-sucrose HFD in combination with low-dose STZ produced a cardiac phenotype that more closely resembled T2DM-induced cardiomyopathy than STZ diabetic rats subjected to a moderate-sucrose HFD.NEW & NOTEWORTHY Left ventricular dysfunction and adverse remodeling were more pronounced in diabetic rats that received low-dose streptozotocin (STZ) and a high-sucrose high-fat diet (HFD) compared with those on a moderate-sucrose HFD in combination with STZ. Our findings highlight the importance of sucrose content in diet composition, particularly in preclinical studies of diabetic cardiomyopathy, and demonstrate that low-dose STZ combined with a high-sucrose HFD is an appropriate rodent model of cardiomyopathy in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Ratas , Masculino , Animales , Estreptozocina/efectos adversos , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Experimental/inducido químicamente , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Fenotipo
3.
Clin Sci (Lond) ; 135(17): 2103-2119, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34427662

RESUMEN

Consumption of diet rich in fat and cigarette smoking (CS) are independent risk factors of non-alcoholic steatohepatitis (NASH), and they often occur together in some populations. The present study investigated the mechanisms of high-fat diet (HFD) and CS, individually and in combination, on the pathogenesis of NASH in mice. C57BL/6 male mice were subjected to either a low-fat chow (CH) or HFD with or without mainstream CS-exposure (4 cigarettes/day, 5 days/ week for 14 weeks). HFD alone caused hepatosteatosis (2.5-fold increase in TG content) and a significant increase in 3-nitrotyrisine (by ∼40-fold) but without an indication of liver injury, inflammation or fibrosis. CS alone in CH-fed mice increased in Tnfα expression and macrophage infiltration by 2-fold and relatively less increase in 3-nitrotyrosine (18-fold). Combination of HFD and CS precipitated hepatosteatosis to NASH reflected by exacerbated makers of liver inflammation and fibrosis which were associated with much severe liver oxidative stress (90-fold increase in 3-nitrotyrisine along with 6-fold increase in carbonylated proteins and 56% increase in lipid oxidations). Further studies were performed to administer the antioxidant tempol to CS exposed HFD mice and the results showed that the inhibition of liver oxidative stress prevented inflammatory and fibrotic changes in liver despite persisting hepatosteatosis. Our findings suggest that oxidative stress is a key mechanism underlying CS-promoted progression of simple hepatosteatosis to NASH. Targeting hepatic oxidative stress may be a viable strategy in halting the progression of metabolic associated fatty liver disease.


Asunto(s)
Cirrosis Hepática/etiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Estrés Oxidativo , Contaminación por Humo de Tabaco/efectos adversos , Animales , Antioxidantes/farmacología , Óxidos N-Cíclicos/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Interleucina-1beta/metabolismo , Peroxidación de Lípido , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica , Marcadores de Spin , Factor de Necrosis Tumoral alfa/metabolismo
4.
Circulation ; 140(4): 319-335, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31154815

RESUMEN

BACKGROUND: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. METHODS: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1-/-) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye-induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. RESULTS: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1-/- mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbß3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5-13 mice/group or 7-10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbß3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.


Asunto(s)
Anexina A1/genética , Plaquetas/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Inflamación/genética , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Transducción de Señal
5.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085666

RESUMEN

The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.


Asunto(s)
Anexina A1/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Aorta/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Sustancias Protectoras/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Formil Péptido/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Estreptozocina , Vasodilatadores/farmacología
6.
J Neuroinflammation ; 15(1): 293, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348168

RESUMEN

BACKGROUND: High-fat feeding and hyperglycemia, key risk factors for the development of metabolic syndrome (MetS), are emerging to associate with increased risk of developing dementia and cognitive decline. Despite this, clinical and experimental studies have yet to elucidate the specific contributions of either high-fat feeding or hyperglycemia to potential neuroinflammatory components. In this study, we delineate these individual components of MetS in the development of neuroinflammation. METHODS: Male C57Bl/6 J adult mice were treated with either citrate vehicle (CIT) or streptozotocin (STZ; 55 mg/kg) 3, 5 and 7 days before commencement of either a normal or high-fat diet for 9 or 18 weeks. By creating separate models of high-fat feeding, STZ-induced hyperglycemia, as well as in combination, we were able to delineate the specific effects of a high-fat diet and hyperglycemia on the brain. Throughout the feeding regime, we measured the animals' body weight and fasting blood glucose levels. At the experimental endpoint, we assessed plasma levels of insulin, glycated haemoglobin and performed glucose tolerance testing. In addition, we examined the effect of high fat-feeding and hyperglycemia on the levels of systemic inflammatory cytokines, gliosis in the hippocampus and immune infiltration in cerebral hemispheric tissue. Furthermore, we used intravital multiphoton microscopy to assess leukocyte-endothelial cell interactions in the cerebral vasculature of mice in vivo. RESULTS: We showed that acute hyperglycemia induces regional-specific effects on the brain by elevating microglial numbers and promotes astrocytosis in the hippocampus. In addition, we demonstrated that chronic hyperglycemia supported the recruitment of peripheral GR1+ granulocytes to the cerebral microvasculature in vivo. Moreover, we provided evidence that these changes were independent of the systemic inflammation associated with high-fat feeding. CONCLUSIONS: Hyperglycemia alone preferentially induces microglial numbers and astrocytosis in the hippocampus and is associated with the peripheral recruitment of leukocytes to the cerebrovasculature, but not systemic inflammation. High-fat feeding alone, and in combination with hyperglycemia, increases the systemic pro-inflammatory cytokine milieu but does not result in brain-specific immune gliosis. These results shed light on the specific contributions of high-fat feeding and hyperglycemia as key factors of MetS in the development of neuroinflammation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Encefalitis/etiología , Hiperglucemia/complicaciones , Sistema Inmunológico/patología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/etiología , Animales , Antibióticos Antineoplásicos/toxicidad , Glucemia , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/inmunología , Encefalitis/patología , Ayuno/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Insulina/sangre , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estreptozocina/toxicidad
7.
Pharmacol Res ; 116: 45-56, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27988387

RESUMEN

Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, ß-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Hexosaminas/biosíntesis , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Glicosilación , Corazón/fisiopatología , Humanos
8.
Pharmacol Res ; 104: 165-75, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26747404

RESUMEN

Available inotropic pharmacotherapy for acute heart failure (HF) remains largely ineffective at ameliorating marked impairments in contractile function. Nitroxyl (HNO), the redox sibling of NO•, has recently attracted interest as a therapeutic approach for acute HF. We now compare the impact of ischaemia-reperfusion (I-R) injury on acute haemodynamic responsiveness of the HNO donor, Angeli's salt (AS), to that of NO and dobutamine. Dose-response curves to bolus doses of AS, diethylamine NONOate (DEA/NO, both 0.001-µmol) and dobutamine (0.1-100 nmol) were performed in rat isolated hearts, following I-R or normoxic perfusion. An additional 10µmol dose of Angeli's salt was included, to permit roughly equivalent inotropic responses to dobutamine. Changes in cardiac contraction, heart rate and coronary flow (CF) were determined. Although AS and DEA/NO elicited comparable dose-dependent increases in CF in normoxic hearts, only AS vasodilation was preserved after I-R. AS and dobutamine elicited dose-dependent inotropic responses in normoxic hearts and I-R blunted inotropic responses to both. Dobutamine however increased heart rate, which was exacerbated by I-R; this was not evident with AS. Further, AS infusion during reperfusion (1µM), in a separate cohort of rat hearts, improved recovery of cardiac contractility, with lower incidence of I-R-induced ventricular fibrillation. In conclusion, these observations suggest that HNO offers haemodynamic advantages over NO following I-R. Although I-R suppresses inotropy to both agents, residual contractile responses to AS following I-R is likely free of concomitant pro-arrhythmic events. HNO donors may thus offer haemodynamic advantages over existing pharmacotherapy in acute HF.


Asunto(s)
Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Nitritos/farmacología , Óxidos de Nitrógeno , Daño por Reperfusión/fisiopatología , Animales , Dobutamina/farmacología , Corazón/fisiopatología , Hemodinámica , Masculino , Contracción Miocárdica , Óxido Nítrico/fisiología , Donantes de Óxido Nítrico/farmacología , Ratas Sprague-Dawley
9.
Pharmacol Res ; 111: 325-335, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27363948

RESUMEN

Increased vascular stiffness and reduced endothelial nitric oxide (NO) bioavailability are characteristic of diabetes. Whether these are evident at a more moderate levels of hyperglycaemia has not been investigated. The objectives of this study were to examine the association between the level of glycaemia and resistance vasculature phenotype, incorporating both arterial stiffness and endothelial function. Diabetes was induced in male Sprague Dawley rats with streptozotocin (STZ; 55mg/kg i.v.) and followed for 8 weeks. One week post STZ, diabetic rats were allocated to either moderate (∼20mM blood glucose, 6-7U/insulins.c. daily) or severe hyperglycaemia (∼30mM blood glucose, 1-2U/insulins.c. daily as required). At study end, rats were anesthetized, and the mesenteric arcade was collected. Passive mechanical wall properties were assessed by pressure myography. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) were assessed using wire myography. Our results demonstrated for the first time that mesenteric arteries from both moderate and severely hyperglycaemic diabetic rats exhibited outward hypertrophic remodelling and increased axial stiffness compared to arteries from non-diabetic rats. Secondly, mesenteric arteries from severely (∼30mM blood glucose), but not moderately hyperglycaemic (∼20mM blood glucose) rats exhibit a significant reduction to ACh sensitivity compared to their non-diabetic counterparts. This endothelial dysfunction was associated with significant reduction in endothelium-derived hyperpolarisation and endothelium-dependent NO-mediated relaxation. Interestingly, endothelium-derived nitroxyl (HNO)-mediated relaxation was intact. Therefore, moderate hyperglycaemia is sufficient to induce adverse structural changes in the mesenteric vasculature, but more severe hyperglycaemia is essential to cause endothelial dysfunction.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Angiopatías Diabéticas/etiología , Endotelio Vascular/fisiopatología , Arterias Mesentéricas/fisiopatología , Remodelación Vascular , Rigidez Vascular , Animales , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Hemoglobina Glucada/metabolismo , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Resistencia Vascular , Vasodilatación , Vasodilatadores/farmacología
10.
Eur J Med Chem ; 265: 115989, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38199163

RESUMEN

Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.


Asunto(s)
Antiinflamatorios , Neutrófilos , Receptores de Formil Péptido , Receptores de Formil Péptido/agonistas , Antiinflamatorios/química , Antiinflamatorios/farmacología
11.
Cardiovasc Res ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879891

RESUMEN

AIMS: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS: The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION: We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.

12.
Biomed Pharmacother ; 162: 114578, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36996678

RESUMEN

BACKGROUND: The peptide hormone relaxin has potent anti-fibrotic and anti-inflammatory properties in various organs, including the kidneys. However, the protective effects of relaxin in the context of diabetic kidney complications remain controversial. Here, we aimed to evaluate the effects of relaxin treatment on key markers of kidney fibrosis, oxidative stress, and inflammation and their subsequent impact on bile acid metabolism in the streptozotocin-induced diabetes mouse model. METHODS AND RESULTS: Male mice were randomly allocated to placebo-treated control, placebo-treated diabetes or relaxin-treated diabetes groups (0.5 mg/kg/d, final 2 weeks of diabetes). After 12 weeks of diabetes or sham, the kidney cortex was harvested for metabolomic and gene expression analyses. Diabetic mice exhibited significant hyperglycaemia and increased circulating levels of creatine, hypoxanthine and trimethylamine N-oxide in the plasma. This was accompanied by increased expression of key markers of oxidative stress (Txnip), inflammation (Ccl2 and Il6) and fibrosis (Col1a1, Mmp2 and Fn1) in the diabetic kidney cortex. Relaxin treatment for the final 2 weeks of diabetes significantly reduced these key markers of renal fibrosis, inflammation, and oxidative stress in diabetic mice. Furthermore, relaxin treatment significantly increased the levels of bile acid metabolites, deoxycholic acid and sodium glycodeoxycholic acid, which may in part contribute to the renoprotective action of relaxin in diabetes. CONCLUSION: In summary, this study shows the therapeutic potential of relaxin and that it may be used as an adjunctive treatment for diabetic kidney complications.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Relaxina , Animales , Ratones , Masculino , Nefropatías Diabéticas/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Relaxina/farmacología , Estreptozocina/farmacología , Riñón , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Fibrosis
13.
Life Sci ; 320: 121542, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871935

RESUMEN

AIMS: Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS: Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS: Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE: This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.


Asunto(s)
Hipertensión , Animales , Ratones , Arterias/patología , Presión Sanguínea/fisiología , Endotelio/patología , Endotelio Vascular/patología , Arterias Mesentéricas , Sistema Nervioso Simpático/fisiología , Vasodilatación
14.
Br J Pharmacol ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658546

RESUMEN

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS). EXPERIMENTAL APPROACH: PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured. KEY RESULTS: Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2. CONCLUSIONS AND IMPLICATIONS: Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH.

15.
Bioorg Med Chem ; 20(7): 2353-61, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22377671

RESUMEN

Isoflavone consumption correlates with reduced rates of cardiovascular disease. Epidemiological studies and clinical data provide evidence that isoflavone metabolites, such as the isoflavan equol, contribute to these beneficial effects. In this study we developed a new route to isoflavans and isoflavenes via 2-morpholinoisoflavenes derived from a condensation reaction of phenylacetaldehydes, salicylaldehydes and morpholine. We report the synthesis of the isoflavans equol and deoxygenated analogues, and the isoflavenes 7,4'-dihydroxyisoflav-3-ene (phenoxodiol, haganin E) and 7,4'-dihydroxyisoflav-2-ene (isophenoxodiol). Vascular pharmacology studies reveal that all oxygenated isoflavans and isoflavenes can attenuate phenylephrine-induced vasoconstriction, which was unaffected by the estrogen receptor antagonist ICI 182,780. Furthermore, the compounds inhibited U46619 (a thromboxane A(2) analogue) induced vasoconstriction in endothelium-denuded rat aortae, and reduced the formation of GTP RhoA, with the effects being greatest for equol and phenoxodiol. Ligand displacement studies of rat uterine cytosol estrogen receptor revealed the compounds to be generally weak binders. These data are consistent with the vasorelaxation activity of equol and phenoxodiol deriving at least in part by inhibition of the RhoA/Rho-kinase pathway, and along with the limited estrogen receptor affinity supports a role for equol and phenoxodiol as useful agents for maintaining cardiovascular function with limited estrogenic effects.


Asunto(s)
Equol/análogos & derivados , Isoflavonas/química , Inhibidores de Proteínas Quinasas/síntesis química , Receptores de Estrógenos/química , Vasodilatadores/síntesis química , Quinasas Asociadas a rho/antagonistas & inhibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/toxicidad , Animales , Equol/síntesis química , Equol/farmacología , Isoflavonas/síntesis química , Isoflavonas/farmacología , Masculino , Morfolinas/química , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Vasoconstricción/efectos de los fármacos , Vasodilatadores/química , Vasodilatadores/farmacología , Quinasas Asociadas a rho/metabolismo
16.
Curr Opin Pharmacol ; 65: 102263, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802962

RESUMEN

Lower extremity artery disease (LEAD) is a chronic inflammatory disease that occurs when atherosclerotic plaques form in the lower extremities, which may lead to amputation if not manged properly. Given clinical standardcare (pharmacological and surgical) have limited efficacy in LEAD, developing novel strategies to manage LEAD remains an unmet clinical need. Given that active resolution of inflammation is essential to facilitate tissue healing and repair, failure to resolve inflammation may lead to chronic inflammation, dysregulated cellular homeostasis and adverse tissue remodeling. Several studies have demonstrated the importance of the balance between endogenous pro-resolving mediators and pro-inflammatory factors. There is growing evidence to suggest endogenous pro-resolving mediators engage with pro-resolving G-protein-coupled receptors to reduce the initiation and progression of inflammatory responses and to increase therapeutic angiogenesis in LEAD. Here, we highlight the mechanisms and the consequences of resolved inflammation, and the therapeutic potential of endogenous pro-resolving mediators-based strategy for this devastating disease.


Asunto(s)
Mediadores de Inflamación , Inflamación , Arterias , Homeostasis , Humanos , Inflamación/tratamiento farmacológico , Extremidad Inferior
17.
Br J Pharmacol ; 179(19): 4617-4639, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35797341

RESUMEN

We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.


Asunto(s)
Lipoxinas , Receptores de Lipoxina , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipoxinas/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
18.
Br J Pharmacol ; 179(16): 4117-4135, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35365882

RESUMEN

BACKGROUND AND PURPOSE: The risk of fatal cardiovascular events is increased in patients with type 2 diabetes mellitus (T2DM). A major contributor to poor prognosis is impaired nitric oxide (NO•) signalling at the level of tissue responsiveness, termed NO• resistance. This study aimed to determine if T2DM promotes NO• resistance in the heart and vasculature and whether tissue responsiveness to nitroxyl (HNO) is affected. EXPERIMENTAL APPROACH: At 8 weeks of age, male Sprague-Dawley rats commenced a high-fat diet. After 2 weeks, the rats received low-dose streptozotocin (two intraperitoneal injections, 35 mg·kg-1 , over two consecutive days) and continued on the same diet. Twelve weeks later, isolated hearts were Langendorff-perfused to assess responses to the NO• donor diethylamine NONOate (DEA/NO) and the HNO donor Angeli's salt. Isolated mesenteric arteries were utilised to measure vascular responsiveness to the NO• donors sodium nitroprusside (SNP) and DEA/NO, and the HNO donor Angeli's salt. KEY RESULTS: Inotropic, lusitropic and coronary vasodilator responses to DEA/NO were impaired in T2DM hearts, whereas responses to Angeli's salt were preserved or enhanced. Vasorelaxation to Angeli's salt was augmented in T2DM mesenteric arteries, which were hyporesponsive to the relaxant effects of SNP and DEA/NO. CONCLUSION AND IMPLICATIONS: This is the first evidence that inotropic and lusitropic responses are preserved, and NO• resistance in the coronary and mesenteric vasculature is circumvented, by the HNO donor Angeli's salt in T2DM. These findings highlight the cardiovascular therapeutic potential of HNO donors, especially in emergencies such as acute ischaemia or heart failure.


Asunto(s)
Diabetes Mellitus Tipo 2 , Óxido Nítrico , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Masculino , Donantes de Óxido Nítrico/farmacología , Nitritos , Óxidos de Nitrógeno/farmacología , Ratas , Ratas Sprague-Dawley
19.
Hypertension ; 78(5): 1168-1184, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34565184

RESUMEN

Pulmonary hypertension is a rare, ostensibly incurable, and etiologically diverse disease with an unacceptably high 5-year mortality rate (≈50%), worse than many cancers. Irrespective of pathogenic origin, dysregulated immune processes underlie pulmonary hypertension pathobiology, particularly pertaining to pulmonary vascular remodeling. As such, a variety of proinflammatory pathways have been mooted as novel therapeutic targets. One such pathway involves the family of innate immune regulators known as inflammasomes. In addition, a new and emerging concept is differentiating between anti-inflammatory approaches versus those that promote pro-resolving pathways. This review will briefly introduce inflammasomes and examine recent literature concerning their role in pulmonary hypertension. Moreover, it will explore the difference between inflammation-suppressing and pro-resolution approaches and how this links to inflammasomes. Finally, we will investigate new avenues for targeting inflammation in pulmonary hypertension via more targeted anti-inflammatory or inflammation resolving strategies.


Asunto(s)
Antiinflamatorios/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Inflamasomas/efectos de los fármacos , Inflamación/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Australia , Distinciones y Premios , Presión Sanguínea/fisiología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología
20.
Front Pharmacol ; 12: 726035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531749

RESUMEN

Atopic dermatitis (AD), also known as atopic eczema, is one of the most common skin diseases and is characterized by allergic skin inflammation, redness, and itchiness and is associated with a hyperactivated type 2 immune response. The leading causes of AD include an imbalance in the immune system, genetic predisposition, or environmental factors, making the development of effective pharmacotherapies complex. Steroids are widely used to treat AD; however, they provide limited efficacy in the long term and can lead to adverse effects. Thus, novel treatments that offer durable efficacy and fewer side effects are urgently needed. Here, we investigated the therapeutic potential of Huangbai Liniment (HB), a traditional Chinese medicine, using an experimental AD mouse model, following our clinical observations of AD patients. In both AD patient and the mouse disease model, HB significantly improved the disease condition. Specifically, patients who received HB treatment on local skin lesions (3-4 times/day) showed improved resolution of inflammation. Using the 1-Chloro-2,4-dinitrobenzene (DNCB)-induced AD model in BALB/c mice, we observed that HB profoundly alleviated severe skin inflammation and relieved the itching. The dermatopathological results showed markedly reversed skin inflammation with decreased epidermal thickness and overall cellularity. Correspondingly, HB treatment largely decreased the mRNA expression of proinflammatory cytokines, including IL-1ß, TNF-α, IL-17, IL-4, and IL-13, associated with declined gene expression of IL-33, ST2, and GATA3, which are connected to the type 2 immune response. In addition, HB restored immune tolerance by promoting regulatory T (TREG) cells and inhibiting the generation of TH1, TH2, and TH17 cells in vitro and in the DNCB-induced AD mouse model. For the first time, we demonstrate that HB markedly mitigates skin inflammation in AD patients and the DNCB-induced AD mouse model by reinvigorating the T cell immune balance, shedding light on the future development and application of novel HB-based therapeutics for AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA