Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(5): 3481-3505, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37458294

RESUMEN

Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.


Asunto(s)
Alimentos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Tecnología de Alimentos
2.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3162-3168, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381999

RESUMEN

The pharmaceutical manufacturing model is gradually changing from intermittent manufacturing to continuous manufacturing and intelligent manufacturing. This paper briefly reviewed the supervision and research progress in continuous pharmaceutical manufacturing in China and abroad and described the definition and advantages of continuous pharmaceutical manufacturing. The continuous manufacturing of traditional Chinese medicine(TCM) at the current stage was summarized in the following three terms: the enhancement of the continuity of intermittent manufacturing operations, the integration of continuous equipment to improve physical continuity between units, and the application of advanced process control strategies to improve process continuity. To achieve continuous manufacturing of TCM, the corresponding key technologies, such as material property characterization, process modeling and simulation, process analysis technology, and system integration, were analyzed from the process and equipment, respectively. It was proposed that the continuous manufacturing equipment system should have the characteristics of high speed, high response, and high reliability, "three high(H~3)" for short. Considering the characteristics and current situation of TCM manufacturing, based on the two dimensions of product quality control and production efficiency, a maturity assessment model for continuous manufacturing of TCM, consisting of operation continuity, equipment continuity, process continuity, and quality control continuity, was proposed to provide references for the application of continuous manufacturing technology for TCM. The implementation of continuous manufacturing or the application of key continuous manufacturing technologies in TCM can help to systematically integrate advanced pharmaceutical technology elements and promote the uniformity of TCM quality and the improvement of production efficiency.


Asunto(s)
Medicina Tradicional China , Reproducibilidad de los Resultados , China , Control de Calidad , Preparaciones Farmacéuticas
3.
Angew Chem Int Ed Engl ; 62(33): e202306333, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37345563

RESUMEN

Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru-FeNi@NLC) encapsulated via lignin-derived carbon was prepared by self-assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm-2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N-doped lignin-derived carbon layer and Ru-FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate-determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost-effective catalysts.

4.
Angew Chem Int Ed Engl ; 61(29): e202205312, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35514288

RESUMEN

Infinite coordination-polymer particles (CPPs) are promising materials for solar energy conversion with high efficiency. However, the range of organic ligands that may be used to create CPPs is limited, as are strategies for modification, thereby hindering the applications of such material. In this paper, competitive evolution-morphological and structural change from Zn-based crystallites to amorphous particles is described. Controlled contribution of organic linkers selectively derived six Zn-CPPs with multivariate characters. Based on the diversity of these substructures, hollow zinc oxide particles were initially formed by self-pyrolysis of CPPs and effectively modified by ultrathin doped nanosheets. The obtained double-sided heterojunctions offer fully-covered active sites, bringing together efficient light-excited charge-transfer nanochannels, which exhibit an excellent solar H2 -releasing activity (e.g., 4512.5 µmol h-1 g-1 ) and stable cyclability.

5.
Chemistry ; 26(8): 1720-1736, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31631424

RESUMEN

Conventional lithium-ion batteries, with flammable organic liquid electrolytes, have serious safety problems, which greatly limit their application. All-solid-state batteries (ASSBs) have received extensive attention from large-scale energy-storage fields, such as electric vehicles (EVs) and intelligent power grids, due to their benefits in safety, energy density, and thermostability. As the key component of ASSBs, solid electrolytes determine the properties of ASSBs. In past decades, various kinds of solid electrolytes, such as polymers and inorganic electrolytes, have been explored. Among these candidates, organic-inorganic composite solid electrolytes (CSEs) that integrate the advantages of these two different electrolytes have been regarded as promising electrolytes for high-performance ASSBs, and extensive studies have been carried out. Herein, recent progress in organic-inorganic CSEs is summarized in terms of the inorganic component, electrochemical performance, effects of the inorganic ceramic nanostructure, and ionic conducting mechanism. Finally, the main challenges and perspectives of organic-inorganic CSEs are highlighted for future development.

6.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38607127

RESUMEN

This study employs a combined computational and experimental approach to elucidate the mechanisms governing the interaction between lignin and urea, impacting lignin dissolution and subsequent aggregation behavior. Molecular dynamics (MD) simulations reveal how the urea concentration and temperature influence lignin conformation and interactions. Higher urea concentrations and temperatures promote lignin dispersion by disrupting intramolecular interactions and enhancing solvation. Density functional theory (DFT) calculations quantitatively assess the interaction energy between lignin and urea, supporting the findings from MD simulations. Anti-solvent precipitation demonstrates that increasing the urea concentration hinders the self-assembly of lignin nanoclusters. The findings provide valuable insights for optimizing lignin biorefinery processes by tailoring the urea concentration and temperature for efficient extraction and dispersion. Understanding the influence of urea on lignin behavior opens up avenues for designing novel lignin-based materials with tailored properties. This study highlights the potential for the synergetic application of MD simulations and DFT calculations to unravel complex material interactions at the atomic level.

7.
Bioresour Technol ; 385: 129458, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37419289

RESUMEN

Lignin is the most abundant natural phenolic polymer. However, the severe condensations of industrial lignin resulted in an undesirable apparent morphology and darker color, which hindered its application in the field of daily chemicals. Therefore, a ternary deep eutectic solvent is used to obtain lignin with light-color and low condensations from softwood. The results showed that the brightness value of lignin extracted from aluminum chloride-1,4-butanediol-choline chloride at 100 °C and 1.0 h was 77.9, and the lignin yield was 32.2 ± 0.6%. It is important that 95.8% of ß-O-4 linkages (ß-O-4 and ß-O-4') was retained. Lignin is used to prepare sunscreens and is added to physical sunscreens at 5%, with SPF up to 26.95 ± 4.20. Meanwhile, enzyme hydrolysis experiments and reaction liquid composition tests were also conducted. In conclusion, a systematic understanding of this efficient process could facilitate high-value utilization of lignocellulosic biomass in industrial processes.


Asunto(s)
Disolventes Eutécticos Profundos , Lignina , Lignina/química , Ácidos de Lewis , Solventes/química , Protectores Solares , Biomasa , Hidrólisis
8.
ACS Appl Mater Interfaces ; 15(3): 4371-4384, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633362

RESUMEN

Amorphous carbon monoliths with tunable microstructures are candidate anodes for future lithium-based energy storage. Enhancing lithium storage capability and solid-state diffusion kinetics are the precondition for practical applications. Transforming intrinsic oxygen-rich defects into active sites and engineering enlarged interlayer spacing are of great importance. Herein, a novel explosion strategy is designed based on oxalate pyrolysis producing CO and CO2 to successfully prepare lignin-derived carbon monolith (LSCM) with active carbonyl (C═O) groups and enlarged interlayer spacing. Explosion promotes the demethylation of methoxyl groups and cleavage of carboxyl groups to form C═O groups. CO2 etches carbon atoms in a short time to improve the heteroatom level, expanding the interlayer spacing. ZnC2O4 is decomposed at 400 °C, simultaneously producing CO and CO2, which constructs less C═O groups and large interlayer spacing. MgC2O4 is decomposed at 450 and 480 °C, staged-weakly producing CO and CO2, which constructs more C═O groups and larger interlayer spacing. CaC2O4 is decomposed at 480 and 700 °C, staged-uniformly producing CO and CO2, which constructs abundant C═O groups and largest interlayer spacing. The LSCM prepared by staged-uniform explosion exhibits high lithium storage capacity, superior rate capability, and cycling performance. The assembled lithium ion capacitor device achieves excellent energy/power densities of 78 Wh kg-1/100 W kg-1 and superior durability (capacitance retention of 8 4.6% after 20,000 cycles). This work gives a novel insight to engineer advanced oxygen-functionalized carbons for enhanced lithium storage.

9.
Biosensors (Basel) ; 13(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37232925

RESUMEN

A capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) was described to discover novel aptamers specific for 5-hydroxymethylfurfural (5-HMF), and a biosensor based on molecular beacon was constructed to detect 5-HMF. The ssDNA library was immobilized to streptavidin (SA) resin to select the specific aptamer. The selection progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing (HTS). Candidate and mutant aptamers were selected and identified by Isothermal Titration Calorimetry (ITC). The FAM-aptamer and BHQ1-cDNA were designed as the quenching biosensor to detect 5-HMF in milk matrix. After the 18th round selection, the Ct value decreased from 9.09 to 8.79, indicating that the library was enriched. The HTS results indicated that the total sequence numbers for 9th, 13th, 16th, and 18th were 417054, 407987, 307666, and 259867, but the number of sequences for the top 300 sequences was gradually increased from 9th to 18th, and the ClustalX2 analysis showed that there were four families with high homology rate. ITC results indicated that the Kd values of H1 and its mutants H1-8, H1-12, H1-14, and H1-21 were 2.5 µM, 1.8 µM, 1.2 µM, 6.5 µM, and 4.7 µM. The linear range of the quenching biosensor was from 0 µM to 75 µM, and it had a similar linear range in the 0.1% milk matrix. This is the first report to select a novel aptamer specific for 5-HMF and develop quenching biosensor for the rapid detection of 5-HMF in milk matrix.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Aptámeros de Nucleótidos/química , ADN de Cadena Simple , Furaldehído
10.
J Colloid Interface Sci ; 644: 295-303, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120878

RESUMEN

The development of highly active and stable earth-rich electrocatalysts remains a major challenge to release the reliance on noble metal catalysts in sustainable (electro)chemical processes. In this work, metal sulfides encapsulated with S/N co-doped carbon were synthesized with a one-step pyrolysis strategy, where S was introduced during the self-assembly process of sodium lignosulfonate. Due to the precise coordination of Ni and Co ions with lignosulfonate, an intense-interacted Co9S8-Ni3S2 heterojunction was formed inside the carbon shell, causing the redistribution of electrons. An overpotential as low as 200 mV was obtained over Co9S8-Ni3S2@SNC to reach a current density of 10 mA cm-2. Only a slight increase of 14.4 mV was observed in a 50 h chronoamperometric stability test. Density functional theory (DFT) calculations showed that Co9S8-Ni3S2 heterojunctions encapsulated with S/N co-doped carbon can optimize the electronic structure, lower the reaction energy barrier, and improve the OER reaction activity. This work provides a novel strategy for constructing highly efficient and sustainable metal sulfide heterojunction catalysts with the assistance of lignosulfonate biomass.

11.
J Colloid Interface Sci ; 629(Pt A): 822-831, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36099849

RESUMEN

Developing noble-metal-free electrocatalysts for efficient oxygen evolution reactions (OER) is urgently desired to obtain green hydrogen by water electrolysis. Coupling FeNi catalysts with other transition metals is an effective strategy to improve the OER performance, but the electronic structure regulation of the catalytic center is challenging. Herein, heterostructures catalyst composed of MoC and FeNi alloy embedded in N-doped biochar (denoted as MoC-FeNi@NLC) was in situ synthesized by pyrolysis of lignin-metals coordination complex. MoC-FeNi@NLC displayed an overpotential of 198 mV and a long steady running time of 200 h at 10 mA·cm-2 in alkaline media. Furthermore, MoC-FeNi@NLC has demonstrated excellent Faradaic efficiency (FE) of over 90 %. A voltage of 1.50 V was required based on the MoC-FeNi@NLC and Pt/C coupling system, which was superior to that of commercial noble metal catalysts (Pt/C || Ir/C, 1.57 V). The density functional theory demonstrated that FeNi alloy balanced the adsorption energy of OER intermediates and regulated the orbital overlap of Mo above Fermi level. While the lignin-derived carbon layer prevented the deactivation and dissolution of catalytic center. The construction strategy of transition metal alloys and carbides heterojunction by the assistance of sustainable lignin derivatives and its structure-activity relationship toward OER electrocatalytic process provides a promising and cost-efficient pathway for the design of high-performance and stable OER catalysts.

12.
Adv Mater ; 35(14): e2208284, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689338

RESUMEN

Electrochemical oxidative lignin cleavage and coupled 2-furaldehyde reduction provide a promising approach for producing high-value added products. However, developing efficient bifunctional electrocatalysts with noble-metal-like activity still remains a challenge. Here, an efficient electrochemical strategy is reported for the selective oxidative cleavage of Cα -Cß bonds in lignin into aromatic monomers by tailoring the electronic structure through P-doped CoMoO4 spinels (99% conversion, highest monomer selectivity of 56%). Additionally, the conversion and selectivity of 2-furaldehyde reduction to 2-methyl furan reach 87% and 73%, respectively. In situ Fourier transform infrared and density functional theory analysis reveal that an upward shift of the Ed upon P-doping leads to an increase in the antibonding level, which facilitates the Cα -Cß adsorption of the lignin model compounds, thereby enhancing the bifunctional electrocatalytic activity of the active site. This work explores the potential of a spinel as a bifunctional electrocatalyst for the oxidative cracking of lignin and the reductive conversion of small organic molecules to high-value added chemicals via P-anion modulation.

13.
Small Methods ; 7(9): e2300462, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37254264

RESUMEN

Lignin, rich in ß-O-4 bonds and aromatic structure, is a renewable and potential resource for value-added chemicals and promoting H2 evolution. However, direct photo-reforming lignin remains a huge challenge due to its recalcitrant structure. Herein, a collaborative strategy is proposed by dispersing Pt on zinc-vacancy-riched ZnIn2 S4 (Pt/VZn -ZIS) for revealing the effect of lignin structure during photo-reforming process with lignin models. And a series of theoretical calculations and experimental results show that lignin model substances with more nucleophilic group structures will have a stronger tendency to occur the photo-reforming reactions. In addition, benefiting of Pt-S electronic channel is formed by occupying Pt atom onto zinc vacancies in ZnIn2 S4 , which can effectively reduce the energy barrier of H2 evolution and accompany the selective oxidation of lignin model from Cα-OH to Cα = O under simulated sunlight. The natural lignin is used to further demonstrate this selective oxidation mechanism. The presented work demonstrates the photo-reforming lignin model mechanism and the influence of lignin-structure during the process of photo-reforming.

14.
Int J Biol Macromol ; 221: 913-922, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36103905

RESUMEN

This work demonstrates an organic solvent fractionation method for lignin homogenization, which can effectively reduce the lignin heterogeneity and use each lignin fraction to prepare polyurethane foams (PUFs) with excellent mechanical properties. Such fractions were fully characterized by GPC, NMR (31P, 2D-HSQC), FTIR, and TG to obtain a detailed description of the structures and properties. The properties of PUFs from each lignin fraction showed higher compatibility than that from unfractionated industrial lignin, as studied by morphology and DSC analysis. The improvement of compatibility between the fractionated lignin fractions and polyethylene glycol can effectively enhance the mechanical properties of the prepared PUFs. The hysteresis loss (43.10%-51.85%) and resilience (95.81%-98.81%) of the fractionated lignin polyurethane foams (LPUFs) were better than that from the unfractionated LPUFs (hysteresis loss 41.64%, resilience 94.67%) at the lignin content of 5%. Subsequently, the strong relationships between lignin structures and PUF properties were demonstrated in detail. The suggested approach provides greater possibilities to prepare LPUFs with tunable properties based on real industrial lignin fractions, rather than modified lignin.


Asunto(s)
Lignina , Poliuretanos , Lignina/química , Poliuretanos/química , Fraccionamiento Químico/métodos , Solventes/química
15.
J Colloid Interface Sci ; 617: 694-703, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35316783

RESUMEN

Lignin porous carbons show good potential as carbon electrode materials for supercapacitors, but face the problem of low capacitance. Combining lignin porous carbons with polyaniline can achieve high capacitance. However, capacitance degradation resulting from the poor compatibility between lignin porous carbons and polyaniline has been the major obstacle for their application. In this work, three lignin porous carbons with different geometries were used as the hosts to anchor polyaniline for carbon/polyaniline composites via in- situ oxidative polymerization, and the compatibility between lignin porous carbons and polyaniline was investigated. It was determined the lamellar hierarchical lignin porous carbon with crumpled nanosheets can provide a large accessible surface area for the heterogeneous nucleation of aniline, which ensures uniform loading of interpenetrating polyaniline nanofibers. Benefiting from the interpenetrating conductive network and enhanced compatibility, the lamellar hierarchical porous carbon/polyaniline composite possesses a high capacitance of up to 643 F/g at 1.0 A/g and a sufficient capacitance of 390 F/g at 30.0 A/g. This work therefore provides design guidance for carbon hosts in high-performance supercapacitor composite electrodes.


Asunto(s)
Carbono , Lignina , Compuestos de Anilina , Capacidad Eléctrica , Porosidad
16.
ChemSusChem ; 15(14): e202200732, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35522223

RESUMEN

The aqueous zinc-ion battery (AZIB) has been widely investigated in recent years because it has the advantages of being green, safe, and made from abundant raw materials. It is necessary to continue to study how to prepare cathode materials with excellent performance and high cycling stability for future commercialization. In this work, a strategy was proposed that uses sustainable sodium lignosulfonate as both carbon and sodium sources to obtain a sodium pre-intercalated vanadium oxide/carbon (VO/LSC) composite as the cathode of AZIB. The carbon matrix could improve the electronic conductivity of vanadium oxide, while the sodium lignosulfonate could provide sodium ions pre-intercalated into the layered vanadium oxide simultaneously. Through this strategy, vanadium-based cathode materials with high stability and excellent rate capability were obtained. The VO/LSC cathode delivered high capacities of 350 and 112.8 mAh g-1 at 0.1 and 4.0 A g-1 , respectively. Zinc sulfate and zinc trifluoromethyl sulfonate were selected as electrolytes, and the influence of electrolytes on the performance of VO/LSC was analyzed. The oxygen in the environment was used to oxidize the low-priced vanadium oxide to achieve a self-charging AZIB. This paper provides a valuable strategy for the design of vanadium-based cathode material for AZIB, which can broaden the research and application of AZIB.

17.
Bioresour Technol ; 312: 123601, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32502887

RESUMEN

In this study, NaOH-catalyzed organosolv pretreatment with different loading of NaOH (0-10%) was proposed to disrupt the recalcitrant structure by degrading lignin, reserve the majority of cellulose and hemicellulose, and improve the enzymatic efficiency of sugarcane bagasse. It was found that the higher loading of NaOH during organosolv pretreatment yielded more glucose, and the synergistic performance of NaOH and ethanol on enzymolysis was superior to that pretreated with only NaOH and only ethanol during two-step pretreatment. Furthermore, Tween 80 was added to determine its influence on enzymolysis after NaOH-catalyzed organosolv pretreatment, leading to the highest glucose yield of 95.1% at 24 h, which saved 2/3 hydrolysis time while generating the similar glucose yield comparing with that without Tween 80. However, the increased yields of glucose by adding Tween 80 were decreased as hydrolysis time was prolonged from 6 h to 24 h.


Asunto(s)
Saccharum , Catálisis , Celulosa , Hidrólisis , Lignina , Hidróxido de Sodio , Azúcares , Tensoactivos
18.
Int J Biol Macromol ; 151: 421-427, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061696

RESUMEN

In this work, the anionic and cationic lignin-based drug-loaded materials (SL/CTAB) with strong hydrophobicity were prepared by using Sodium Lignosulfonate (SL) via self-assembly. The obtained SL/CTAB was used as drug-loaded material and emulsifier to prepare avermectin nano-formulation, which can be automatically dispersed into nano drug-loaded nanospheres in water. The cold and hot storage experiments show that the physical and chemical stability of the nano-formulation is good. The nano-formulation exhibits controlled-release performance, and the cumulative release amounts range from 56.27% to 87.33% in 62 h. Meanwhile, the release rates slow down with increasing SL/CTAB dosage. After UV irradiation for 50 h, the retention rates of avermectin in the nano-formulation range from 46.67% to 63.41%, which is 2.18-2.96 times higher than commercial avermectin Emulsifiable Concentrate (EC). The experiment of simulated rainwater scour-resistance shows that the affinity of lignin-based nano-formulation to the Epipremnum aureum leaves is higher than EC formulation.


Asunto(s)
Antiprotozoarios/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos , Ivermectina/análogos & derivados , Lignina/química , Nanopartículas , Antiprotozoarios/química , Preparaciones de Acción Retardada , Estabilidad de Medicamentos , Ivermectina/administración & dosificación , Ivermectina/química , Microesferas , Tamaño de la Partícula , Fotólisis , Análisis Espectral , Nanomedicina Teranóstica
19.
J Hazard Mater ; 382: 121098, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31479823

RESUMEN

We have rationally designed and fabricated of "face-to-face" 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction by growing ZnIn2S4 nanosheets on the surfaces of In2O3 cubes as photocatalysts for 2,4-dichlorophenol (2,4-DCP) degradation under visible light. Herein, the unique 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet hierarchical structure not only exposes far more abundant heterojunction interface active sites compared to 3D/0D In2O3 nanocube/ZnIn2S4 nanoparticle, but also produces numbers of compact high-speed nanochannels in the junctions, which significantly promotes the separation and migration of photogenerated carriers. Profiting by structural and compositional advantages, the optimized 3D/2D ZnIn2S4-In2O3 photocatalyst shows excellent photocatalytic activity and stability in the degradation of 2,4-DCP, which is 1.85, 2.60, 3.02 and 3.54-fold higher than that of 3D/0D ZnIn2S4-In2O3, ZnIn2S4 nanosheet, ZnIn2S4 nanoparticle and In2O3, respectively. Meanwhile, the main active species (·O2-, ·OH and h+) produced in the photodegradation process were determined and the intermediates and degradation mechanism were studied in detail. Besides, the application on the removal of 2,4-DCP in natural water and actual wastewaters by 3D/2D ZnIn2S4-In2O3 also have been studied. This work provides a new strategy for efficiently optimize the advantages of binary nano-architectures to effectively degrade phenolic pollutants in the environment.

20.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113775

RESUMEN

Lignin is the most abundant by-product from the pulp and paper industry as well as the second most abundant natural renewable biopolymer after cellulose on earth. In recent years, transforming unordered and complicated lignin into ordered and uniform nanoparticles has attracted wide attention due to their excellent properties such as controlled structures and sizes, better miscibility with polymers, and improved antioxidant activity. In this review, we first introduce five important technical lignin from different sources and then provide a comprehensive overview of the recent progress of preparation techniques which are involved in the fabrication of various lignin-based nanoparticles and their industrial applications in different fields such as drug delivery carriers, UV absorbents, hybrid nanocomposites, antioxidant agents, antibacterial agents, adsorbents for heavy metal ions and dyes, and anticorrosion nanofillers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA