RESUMEN
Inflammation plays a crucial role in the development of various disease conditions or is closely associated with them. Inflammatory cytokines like TNF often engage in interactions with other cytokines and growth factors, including TGFß, to orchestrate inflammatory process. Basal/endogenous TGFß signaling is a universal presence, yet the precise way TNF communicates with TGFß signaling to regulate inflammation and influence inflammatory levels in macrophages has remained elusive. To address this question, this study utilized genetic approaches and a combination of molecular and cellular methods, including conditional TGFß receptor knockout mice, human cells, RNAseq, ATACseq and Cut & Run-seq. The results reveal that the TGFß signaling functions as a vital homeostatic pathway, curtailing uncontrolled inflammation in macrophages in response to TNF. Conversely, TNF employs two previously unrecognized mechanisms to suppress the TGFß signaling. These mechanisms encompass epigenetic inhibition and RBP-J-mediated inhibition of the TGFß signaling pathway by TNF. These mechanisms empower TNF to diminish the antagonistic influence exerted by the TGFß signaling pathway, ultimately enhancing TNF's capacity to induce heightened levels of inflammation. This reciprocal suppression dynamic between TNF and the TGFß signaling pathway holds unique physiopathological significance, as it serves as a crucial "braking" mechanism. The balance between TNF levels and the activity of the endogenous TGFß signaling pathway plays a pivotal role in determining the overall extent of inflammation. The potential for therapeutically augmenting the TGFß signaling pathway presents an intriguing avenue for countering the impact of TNF and, consequently, developing innovative strategies for inflammation control.
Asunto(s)
Inflamación , Macrófagos , Ratones Noqueados , Transducción de Señal , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa , Animales , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BLRESUMEN
TNF plays a crucial role in inflammation and bone resorption in various inflammatory diseases, including rheumatoid arthritis (RA). However, its direct ability to drive macrophages to differentiate into osteoclasts is limited. Although RBP-J is recognized as a key inhibitor of TNF-mediated osteoclastogenesis, the precise mechanisms that restrain TNF-induced differentiation of macrophages into osteoclasts are not fully elucidated. In this study, we identified that the Notch ligand Jagged1 is a previously unrecognized RBP-J target. The expression of Jagged1 is significantly induced by TNF mainly through RBP-J. The TNF-induced Jagged1 in turn functions as a feedback inhibitory regulator of TNF-mediated osteoclastogenesis. This feedback inhibition of osteoclastogenesis by Jagged1 does not exist in RANKL-induced mouse osteoclast differentiation, as RANKL does not induce Jagged1 expression. The Jagged1 level in peripheral blood monocytes/osteoclast precursors is decreased in RA compared with the nonerosive inflammatory disease systemic lupus erythematosus, suggesting a mechanism that contributes to increased osteoclast formation in RA. Moreover, recombinant Jagged1 suppresses human inflammatory osteoclastogenesis. Our findings identify Jagged1 as an RBP-J direct target that links TNF and Notch signaling pathways and restrains TNF-mediated osteoclastogenesis. Given that Jagged1 has no effect on TNF-induced expression of inflammatory genes, its use may present a new complementary therapeutic approach to mitigate inflammatory bone loss with little impact on the immune response in disease conditions.
Asunto(s)
Artritis Reumatoide , Resorción Ósea , Humanos , Animales , Ratones , Osteogénesis , Retroalimentación , Osteoclastos/metabolismo , Macrófagos , Artritis Reumatoide/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.
Asunto(s)
Microbiota , Purificación del Agua , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos/microbiología , Cadmio , Sulfatos/metabolismo , Sulfuros/química , Purificación del Agua/métodosRESUMEN
Autotrophic ammonium removal by sulfate-dependent anaerobic ammonium oxidation (S-Anammox) process was studied in an upflow anaerobic sludge bed reactor inoculated with Anammox sludge. Over an operation period of 371 days, the reactor with a hydraulic retention time of 16 h was fed with influent in which NH4+ concentration was fixed at 70 mg N L-1, and the molar ratio of NO2-:NO3-:SO42- was 1:0.2:0.2, 0.5:0.1:0.3 and 0:0:0.5 in stages I, II and III, respectively. As the NO2- in influent was entirely replaced by SO42-, the NH4+ removal rate was 31.02 mg N L-1 d-1, and the conversion rate of SO42- was 8.18 mg S L-1 d-1. On grounds of the high NH4+:SO42- removal ratio (8.67:1), the S2- accumulation and pH drop in effluent, as well as the analysis results of microbial community structure, the S-Anammox process was speculated to play a dominant role in stage III. The NH4+ over-transformation was presumably as a consequence of the cyclic regeneration of SO42-. Concerning the microbial characteristics in the system, the Anammox bacteria (Candidatus Brocadia), sulfate-reducing bacteria (SRB) (Desulfatiglans and Desulfurivibrio) and sulfur-oxidizing bacteria (SOB) (Thiobacillus) in biomass was enriched in the case of without addition of NO2- in influent. Sulfate reduction driven ammonium anaerobic oxidation was probably attributed to the coordinated metabolism of nitrogen- and sulfur-utilizing bacteria consortium, in which Anammox bacteria dominates the nitrogen removal, and the SRB and SOB participates in the sulfur cycle as well as accepts required electrons from Anammox bacteria through a direct inter-species electron transfer (DIET) pathway.
Asunto(s)
Compuestos de Amonio , Microbiota , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Sulfatos , Aguas ResidualesRESUMEN
Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSSâday), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.
Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Aguas Residuales , Bacterias/metabolismo , Anaerobiosis , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , DesnitrificaciónRESUMEN
The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to ß-catenin and functioning through the ß-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.
RESUMEN
We report here the complete genomic sequence of the Chinese bluetongue virus serotype 1 (BTV1) strain SZ97/1. This work is the first to document the complete genomic sequence of a BTV1 strain from China and represents the second complete sequence of BTV1 in the world. The sequence information provided here will help determine the geographic origin of Chinese BTV1 and provide data to facilitate future analyses of the genetic diversity and phylogenetic relationships of BTV strains.
Asunto(s)
Virus de la Lengua Azul/genética , Virus de la Lengua Azul/aislamiento & purificación , Lengua Azul/virología , Genoma Viral , Animales , Virus de la Lengua Azul/clasificación , China , Genómica , Datos de Secuencia Molecular , OvinosRESUMEN
The VP2 protein of bluetongue virus (BTV) is an important structural protein and is the principal antigen responsible for BTV serotype specificity. In this study, we mapped the reactivity of two BTV16-specific monoclonal antibodies (MAbs) and identified two novel serotype-specific linear B cell epitopes on the BTV16 VP2 protein. By screening a series of peptides derived from the BTV16 VP2 protein and expressed as mannose-binding protein fusions, we determined that the linear epitopes recognized by the VP2-specific MAbs 3 G10 and 2B4 were located within the peptides 34EWSGHDVTEIPNRRMF49 and 540KNEDPYVKRTVKPIRA555, respectively. To define the minimal region required for antibody binding within these peptide regions, a series of progressively shorter peptides were synthesized and evaluated for 3 G10 and 2B4 binding. This work defined the motifs 34EWSGHDVTEIPNRRMF49 and 543DPYVKRTVK555 as the minimal linear peptides required for 3 G10 and 2B4 binding, respectively. Alignment of amino acid sequences from a number of BTV16 strains isolated from different regions indicated that these two epitopes are highly conserved among BTV16 strains. Furthermore, these two epitopes are not conserved among other BTV serotypes or prototype members of the genus Orbivirus in the family Reoviridae, as shown by sequence alignments. The MAb reagents and linear epitopes defined here provide the basis for the development of epitope-based serotype-specific differential diagnostic tools and may be useful in the design of epitope-based vaccines.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Lengua Azul/inmunología , Proteínas de la Cápside/inmunología , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Virus de la Lengua Azul/clasificación , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , SerotipificaciónRESUMEN
M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages, and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. The Adipoq-lineage progenitors with high CSF1 expression also exist in human bone marrow. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis, and pathological bone loss.
Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Osteogénesis , Ratones , Humanos , Animales , Factor Estimulante de Colonias de Macrófagos/metabolismo , Médula Ósea , Diferenciación Celular , Macrófagos/metabolismo , Osteoclastos/metabolismo , Células de la Médula Ósea/metabolismo , Ratones Endogámicos C57BL , Adiponectina/metabolismoRESUMEN
West Nile virus (WNV) non-structural protein 1 (NS1) elicits protective immune responses during infection of animals. WNV NS1-specific antibody responses can provide the basis for serological diagnostic reagents, so the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the conservation of these sites among the Japanese encephalitis virus (JEV) serocomplex members also needs to be defined. The present study describes the mapping of linear B-cell epitopes in WNV NS1. We screened eight NS1-specific mAbs and antisera (polyclonal antibodies; pAbs) from mice immunized with recombinant NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. The screen using mAbs identified four WNV-specific (including Kunjin virus) epitopes, located at aa 21-36, 101-116, 191-206 and 261-276 in WNV NS1. However, using pAbs, only three WNV-specific epitopes were identified, located at positions 101-116, 191-206 and 231-246. Two of these epitopes (aa 21-36 and 261-276) had different reactivity with mAbs and pAbs. The knowledge and reagents generated in this study have potential applications in differential diagnostics and epitope-based marker vaccine development for WNV and viruses of the JEV serocomplex.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/virología , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Proteínas no Estructurales Virales/inmunología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/química , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/química , Virus del Nilo Occidental/genéticaRESUMEN
We report here the complete genomic sequence of the Chinese bluetongue virus serotype 16 (BTV16) strain BN96/16. This work is the first to document the complete genomic sequence (segments 1 to 10) of a BTV16 strain. The sequence information provided herein will help determine the geographic origin of BTV16 and define the phylogenetic relationship of BTV16 to other BTV strains.
Asunto(s)
Virus de la Lengua Azul/genética , Genoma Viral , ARN Viral/genética , Análisis de Secuencia de ADN , Animales , Lengua Azul/virología , Virus de la Lengua Azul/aislamiento & purificación , China , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogeografía , OvinosRESUMEN
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar-amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10-30 cm (upper layer) and 50-60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
RESUMEN
BACKGROUND: The West Nile virus (WNV) nonstructural protein 1 (NS1) is an important antigenic protein that elicits protective antibody responses in animals and can be used for the serological diagnosis of WNV infection. Although previous work has demonstrated the vital role of WNV NS1-specific antibody responses, the specific epitopes in the NS1 have not been identified. RESULTS: The present study describes the identification of two linear B-cell epitopes in WNV NS1 through screening a phage-displayed random 12-mer peptide library with two monoclonal antibodies (mAbs) 3C7 and 4D1 that directed against the NS1. The mAbs 3C7 and 4D1 recognized phages displaying peptides with the consensus motifs LTATTEK and VVDGPETKEC, respectively. Exact sequences of both motifs were found in the NS1 ((895)LTATTEK(901) and (925)VVDGPETKEC(934)). Further identification of the displayed B cell epitopes were conducted using a set of truncated peptides expressed as MBP fusion proteins. The data indicated that (896)TATTEK(901) and (925)VVDGPETKEC(934) are minimal determinants of the linear B cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. Antibodies present in the serum of WNV-positive horses recognized the minimal linear epitopes in Western blot analysis, indicating that the two peptides are antigenic in horses during infection. Furthermore, we found that the epitope recognized by 3C7 is conserved only among WNV strains, whereas the epitope recognized by 4D1 is a common motif shared among WNV and other members of Japanese encephalitis virus (JEV) serocomplex. CONCLUSIONS: We identified TATTEK and VVDGPETKEC as NS1-specific linear B-cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. The knowledge and reagents generated in this study may have potential applications in differential diagnosis and the development of epitope-based marker vaccines against WNV and other viruses of JEV serocomplex.
Asunto(s)
Epítopos de Linfocito B/inmunología , Biblioteca de Péptidos , Proteínas no Estructurales Virales/inmunología , Virus del Nilo Occidental/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/sangre , Western Blotting , Epítopos de Linfocito B/genética , Enfermedades de los Caballos/inmunología , Caballos , Tamizaje Masivo , Ratones , Ratones Endogámicos BALB C , Proteínas no Estructurales Virales/genética , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genéticaRESUMEN
BACKGROUND: The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported. RESULTS: In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae. CONCLUSION: The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex.
Asunto(s)
Anticuerpos Monoclonales/análisis , Proteínas de la Cápside/química , Secuencia Conservada , Virus de la Encefalitis Japonesa (Especie)/química , Epítopos de Linfocito B/química , Biblioteca de Péptidos , Virus del Nilo Occidental/química , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/virología , Mapeo Epitopo , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/inmunologíaRESUMEN
Classroom lead-in is the initial stage for motivating students to become engaged in-class interaction. However, little research, to our knowledge, has analyzed the role of teachers' multimodal competence reflected through their multimodal pedagogic discourse in the realization of the ultimate goals of classroom lead-ins. Based on the data collected from a teaching contest in China, this paper explores how two-winner teachers utilize their multimodal ensembles of communicative modes to engage students during classroom lead-ins. The analysis shows that different communicative modes construct the higher-level action of lead-in, and they are orchestrated into multimodal ensembles for the specific function of each lead-in move. The findings indicate that EFL teachers' high multimodal competence plays a decisive role in performing classroom lead-ins, and different lead-ins strategies influence the different orchestration of communicative modes. In constructing multimodal pedagogic discourse, teachers build up their professional image and display their personal charm as well. Future research for multimodal discourse analysis and pedagogic research is suggested in the paper.
RESUMEN
In obesity, macrophages drive a low-grade systemic inflammation (LSI) and insulin resistance (IR). The ribosome biosynthesis protein NOC4 (NOC4) mediates 40 S ribosomal subunits synthesis in yeast. Hereby, we reported an unexpected location and function of NOC4L, which was preferentially expressed in human and mouse macrophages. NOC4L was decreased in both obese human and mice. The macrophage-specific deletion of Noc4l in mice displayed IR and LSI. Conversely, Noc4l overexpression by lentivirus treatment and transgenic mouse model improved glucose metabolism in mice. Importantly, we found that Noc4l can interact with TLR4 to inhibit its endocytosis and block the TRIF pathway, thereafter ameliorated LSI and IR in mice.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Endosomas/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Modelos Animales de Enfermedad , Endosomas/genética , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Receptor Toll-Like 4/genéticaRESUMEN
Coordination polymers [Cd(1,4-bpeb)(L1)] (1), [Zn2(1,4-bpeb)2(L2)2(SO42-)2] (2) and [Cd(1,4-bpeb)(L3)] (H2O) (3) (H2L1, 3-[2-(3-hydroxy-phenoxymethyl)-benzyloxy]-benzoic acid; HL2, 1H-Indazole-3-carboxylic acid; H3L3, benzene-1,2,3-tricarboxylic acid; 1,4-bpeb, 1,4-bis[2-(4-pyridyl)vinyl]benzene have been synthesized under solvothermal conditions. Complexes 1-3 underwent photodimerization in the solid-state to give quantitative yields of single isomeric products. The choice of carboxyl ligands L and metal center determined the arrangement of 1,4-bpeb ligands, which in turn directed the regiochemistry of the final photoproducts. The solid-state network structures of cadmium based 1 and 3 had 1,4-bpeb pairs aligned face-to-face with both C[double bond, length as m-dash]C centres in each ligand at an appropriate distance and alignment for photodimerization to give the corresponding para-[2.2]cyclophane (pCP) exclusively. By contrast, compound 2 possessed dinuclear (ZnSO4)2 metallocycles that positioned the 1,4-bpeb "arms" face-to-face, but with C[double bond, length as m-dash]C centres offset at an appropriate distance for only one pair to undergo [2 + 2] cycloaddition to yield a single stereoisomer of the monocyclobutane photo-product bpbpvpcb. This work highlights crystal engineering design principles that can be used to facilitate regio- and stereospecificity in solid-state transformations.
RESUMEN
Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV.
Asunto(s)
Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/prevención & control , Proteínas no Estructurales Virales/inmunología , Virus del Nilo Occidental/inmunología , Animales , Reacciones Cruzadas , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/virología , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Virales/inmunología , Virus del Nilo Occidental/genéticaRESUMEN
Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211-226 and 331-352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11-26, 30-45 and 151-166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein.