Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(1): 915-926, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154048

RESUMEN

High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.

2.
ACS Nano ; 15(4): 7522-7535, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33779134

RESUMEN

Separating low/high-valent ions with sub-nanometer sizes is a crucial yet challenging task in various areas (e.g., within environmental, healthcare, chemical, and energy engineering). Satisfying high separation precision requires membranes with exceptionally high selectivity. One way to realize this is constructing well-designed ion-selective nanochannels in pressure-driven membranes where the separation mechanism relies on combined steric, dielectric exclusion, and Donnan effects. To this aim, charged nanochannels in polyamide (PA) membranes are created by incorporating ionic polyamidoamine (PAMAM) dendrimers via interfacial polymerization. Both sub-10 nm sizes of the ionic PAMAM dendrimer molecules and their gradient distributions in the PA nanofilms contribute to the successful formation of defect-free PA nanofilms, containing both internal (intramolecular voids) and external (interfacial voids between the ionic PAMAM dendrimers and the PA matrix) nanochannels for fast transport of water molecules. The external nanochannels with tunable ionizable groups endow the PA membranes with both high low/high-valent co-ion selectivity and chemical cleaning tolerance, while the ion sieving/transport mechanism was analyzed by employing the Donnan steric pore model with dielectric exclusion.

3.
J Colloid Interface Sci ; 553: 475-483, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31229866

RESUMEN

To enhance hexavalent chromium (Cr(VI)) removal performance under acidic conditions, the nanofiltration (NF) membrane with enhanced negative charge was fabricated via introducing 2, 5-diaminobenzenesulfonic acid (DABSA) into polyamide layer. The control membrane (NF-P) was directly prepared from piperazine and 1, 3, 5-benzenetricarbonyltrichloride. Surface chemical compositions, morphology, surface charge, pore size, permeability and pH-dependent separation performance of the fabricated membranes were characterized. The membranes showed the similar water permeance (∼11.5 L m-2 h-1 bar-1) and Na2SO4 rejections (∼98%) under neutral environments. The DABSA introduced NF membrane (NF-PD) was negatively charged in the pH range of 2.5-11, while the isoelectric point for NF-P was ∼pH 4.0. Cr(VI) removal ability was then evaluated under various concentrations and pH environments. The results indicated that NF-PD showed the better Cr(VI) rejection performance in all tested conditions than NF-P, especially under acidic environments (e.g., pH 4 and pH 5). Moreover, there was a fluctuation of the rejection with the increase of Cr(VI) concentration under acidic environments, which was mainly caused by the formation of Cr2O72- species. The harmful Cr(VI) was efficiently removed by the NF membrane with enhanced negative charge under acidic environments, which indicated the wider application range of the NF membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA