Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Transl Res ; 13(4): 2077-2093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017376

RESUMEN

In previous studies oncolytic measles viruses (MVs) have shown significant antitumor activity against various tumors. In our research recombinant MV-Hu191 (rMV-Hu191), established via reverse genetics technology and expressing enhanced green fluorescent protein (EGFP), was evaluated for its therapeutic effects and related mechanisms against nephroblastoma cell lines. We built three different constructs based on rMV-Hu191 to express EGFP effectively. Our experiments showed that rMV-Hu191 expressing EGFP could efficiently infect and replicate in nephroblastoma cell lines. Caspase-induced apoptosis exerted a significant impact on MV-induced cell death, which was accompanied by emission of cellular ATP and high-mobility group protein 1 (HMGB1) and by translocation of calreticulin (CRT). Intratumoral injection of rMV-Hu191-EGFP resulted in significant regression of tumors in a G401 xenograft model. Our results indicate that the MV-Hu191 strain, which is widely used in China, is an appropriate vector for expression of foreign genes and could serve as a potentially good candidate for nephroblastoma therapy mediated by induction of apoptosis-associated immunogenic cell death (ICD).

2.
Transl Oncol ; 14(7): 101091, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33848808

RESUMEN

The potential therapeutic effects of oncolytic measles virotherapy have been verified against plenty of malignancies. However, the oncolytic effects and underlying mechanisms of the recombinant Chinese measles virus vaccine strain Hu191 (rMV-Hu191) against human colorectal cancer (CRC) remain elusive. In this study, the antitumor effects of rMV-Hu191 were evaluated in CRC both in vitro and in vivo. From our data, rMV-Hu191 induced remarkably caspase-dependent apoptosis and complete autophagy in vitro. In mice bearing CRC xenografts, tumor volume was remarkably suppressed and median survival was prolonged significantly with intratumoral treatment of rMV-Hu191. To gain further insight into the relationship of rMV-Hu191-induced apoptosis and autophagy, we utilized Rapa and shATG7 to regulate autophagy. Our data suggested that autophagy was served as a protective role in rMV-Hu191-induced apoptosis in CRC. PI3K/AKT signaling pathway as one of the common upstream pathways of apoptosis and autophagy was activated in CRC after treatment with rMV-Hu191. And inhibition of PI3K/AKT pathway using LY294002 was accompanied by enhanced apoptosis and decreased autophagy which suggested that PI3K/AKT pathway promoted rMV-Hu191-induced autophagy and inhibited rMV-Hu191-induced apoptosis. This is the first study to demonstrate that rMV-Hu191 could be used as a potentially effective therapeutic agent in CRC treatment. As part of the underlying cellular mechanisms, apoptosis and autophagy were involved in the oncolytic effects generated by rMV-Hu191. And the cross-talk between these two processes and the PI3K/AKT signaling pathway was well identified.

3.
World J Pediatr ; 15(5): 499-505, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31456156

RESUMEN

BACKGROUND: Mumps is a common type of respiratory infectious disease caused by mumps virus (MuV), and can be effectively prevented by vaccination. In this study, a reverse genetic system of MuV that can facilitate the rational design of safer, more efficient mumps vaccine candidates is established. METHODS: MuV-S79 cDNA clone was assembled into a full-length plasmid by means of the GeneArt™ High-Order Genetic Assembly System, and was rescued via reverse genetic technology. RT-PCR, sequencing, and immunofluorescence assays were used for rMuV-S79 authentication. Viral replication kinetics and in vivo experimental models were used to evaluate the replication, safety, and immunogenicity of rMuV-S79. RESULTS: A full-length cDNA clone of MuV-S79 in the assembly process was generated by a novel plasmid assemble strategy, and a robust reverse genetic system of MuV-S79 was successfully established. The established rMuV-S79 strain could reach a high virus titer in vitro. The average viral titer of rMuV-S79 in the lung tissues was 2.68 ± 0.14 log10PFU/g lung tissue, and rMuV-S79 group did not induce inflammation in the lung tissues in cotton rats. Neutralizing antibody titers induced by rMuV-S79 were high, long-lasting and could provide complete protection against MuV wild strain challenge. CONCLUSION: We have established a robust reverse genetic system of MuV-S79 which can facilitate the optimization of mumps vaccines. rMuV-S79 rescued could reach a high virus titer and the safety was proven in vivo. It could also provide complete protection against MuV wild strain challenge.


Asunto(s)
Vacuna contra la Parotiditis/genética , Virus de la Parotiditis/genética , Paperas/genética , Paperas/prevención & control , Genética Inversa , Animales , Clonación Molecular , ADN Viral/genética , Genoma Viral , Humanos , Ratas
4.
World J Pediatr ; 15(5): 511-515, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377975

RESUMEN

BACKGROUND: To describe mumps virus (MuV) used as a vector to express enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) genes. METHODS: Molecular cloning technique was applied to establish the cDNA clones of recombinant mumps viruses (rMuVs). rMuVs were recovered based on our reverse genetic system of MuV-S79. The properties of rMuVs were determined by growth curve, plaque assay, fluorescent microscopy and determination of fluorescent intensity. RESULTS: Three recombinant viruses replicated well in Vero cells and similarly as parental rMuV-S79, expressed heterologous genes in high levels, and were genetically stable in at least 15 passages. CONCLUSION: rMuV-S79 is a promising platform to accommodate foreign genes like marker genes, other antigens and immunomodulators for addressing various diseases.


Asunto(s)
Virus de la Parotiditis/genética , Genética Inversa , Animales , Chlorocebus aethiops , Clonación Molecular , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Células Vero , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA