Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936024

RESUMEN

Adding fruit tree branches to the compost pile in appropriate proportions is one of the methods used to address the challenge of tobacco waste recycling. However, the effects of different proportions of fruit tree branches on nicotine concentration and microbial diversity during tobacco waste composting have not been reported. In this study, a composting system with tobacco waste, cow dung, and fruit tree branches was established in a laboratory fermenter to assess the impact of adding 10%, 20%, and 30% fruit tree branches on quantity changes. In addition, the relationships between nicotine degradation, compost properties, enzyme activities, and microbial diversities were determined using biochemical assay methods and high-throughput sequencing. The results showed that adding appropriate proportions of fruit branch segments affected changes in physical and chemical properties during composting and promoted tobacco waste compost maturity. Aerobic composting effectively degraded nicotine in tobacco waste. Increased proportions of fruit branch segments led to elevations in nicotine degradation rates and enzyme activities related to lignocellulose degradation. The addition of fruit branches influenced the relative abundance and species of dominant bacteria and fungi at the phylum and genus levels. However, it did not significantly affect the relative abundance of the main bacterial genera involved in nicotine degradation. Nevertheless, it reduced the sensitivity of enzyme activity to nicotine content within heaps, increasing reliance on total nitrogen changes. The results of this study provide a theoretical basis for the utilization of tobacco waste in composting systems and indicate that fruit tree branches can enhance nicotine degradation efficiency during tobacco waste composting.


Asunto(s)
Compostaje , Nicotiana , Nicotina , Nicotiana/metabolismo , Nicotina/metabolismo , Nicotina/análisis , Frutas , Microbiología del Suelo , Árboles
2.
Environ Sci Pollut Res Int ; 30(52): 112104-112116, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37824054

RESUMEN

Aerobic composting, especially semipermeable membrane-covered aerobic fermentation, is known to be an effective method for recycling and reducing vegetable waste. However, this approach has rarely been applied to the aerobic composting of vegetable waste; in addition, the product characteristics and GHG emissions of the composting process have not been studied in-depth. This study investigated the effect of using different structural ventilation systems on composting efficiency and greenhouse gas emissions in a semipermeable membrane-covered vegetable waste compost. The results for the groups (MV1, MV2, and MV3) with bottom ventilation plus multichannel ventilation and the group (BV) with single bottom ventilation were compared here. The MV2 group effectively increased the average temperature by 19.06% whilst also increasing the degradation rate of organic matter by 30.81%. Additionally, the germination index value reached more than 80%, 3 days in advance. Compared to those of the BV group, the CH4, N2O, and NH3 emissions of MV2 were reduced by 32.67%, 21.52%, and 22.57%, respectively, with the total greenhouse gas emissions decreasing by 24.17%. Overall, this study demonstrated a multichannel ventilation system as a new method for improving the composting efficiency of vegetable waste whilst reducing gas emissions.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Compostaje/métodos , Gases de Efecto Invernadero/análisis , Verduras , Metano/análisis , Temperatura , Suelo/química
3.
Environ Int ; 172: 107768, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36709675

RESUMEN

The global livestock system is one of the largest sources of ammonia emissions and there is an urgent need for ammonia mitigation. Here, we designed and constructed a novel strategy to abate ammonia emissions via livestock manure acidification based on a synthetic lactic acid bacteria community (LAB SynCom). The LAB SynCom possessed a wide carbon source spectrum and pH profile, high adaptability to the manure environment, and a high capability of generating lactic acid. The mitigation strategy was optimized based on the test and performance by adjusting the LAB SynCom inoculation ratio and the adding frequency of carbon source, which contributed to a total ammonia reduction efficiency of 95.5 %. Furthermore, 16S rDNA amplicon sequencing analysis revealed that the LAB SynCom treatment reshaped the manure microbial community structure. Importantly, 22 manure ureolytic microbial genera and urea hydrolysis were notably inhibited by the LAB SynCom treatment during the treatment process. These findings provide new insight into manure acidification that the conversion from ammonia to ammonium ions and the inhibition of ureolytic bacteria exerted a synergistic effect on ammonia mitigation. This work systematically developed a novel strategy to mitigate ammonia emissions from livestock waste, which is a crucial step forward from traditional manure acidification to novel and environmental-friendly acidification.


Asunto(s)
Amoníaco , Estiércol , Animales , Amoníaco/análisis , Ganado , Bacterias , Carbono , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA