Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305462

RESUMEN

BACKGROUND: The minimum admissible detuning efficiency (DE) of a receive coil is an essential parameter for coil designers. A receive coil with inefficient detuning leads to inhomogeneous B1 during excitation. Previously proposed criteria for quantifying the DE rely on indirect measurements and are difficult to implement. PURPOSE: To present an alternative method to quantify the DE of receive-only surface coils. STUDY TYPE: Theoretical study supported by simulations and phantom experiments. PHANTOMS: Uniform spherical (100 mm diameter) and cylindrical (66 mm diameter) phantoms. FIELD STRENGTH/SEQUENCE: Dual repetition time B1 mapping sequence at 1.5T, and Bloch-Siegert shift B1 mapping sequence at 3.0T. ASSESSMENT: One non-planar (80 × 43 mm2 ) and two planar (40 and 57 mm diameter) surface coils were built. Theoretical analysis was performed to determine the minimum DE required to avoid B1 distortions. Experimental B1 maps were acquired for the non-planar and planar surface coils at both 1.5T and 3.0T and visually compared with simulated B1 maps to assess the validity of the theoretical analysis. STATISTICAL TESTS: None. RESULTS: Based on the theoretical analysis, the proposed minimum admissible DE, defined as DEthr = 20 Log (Q) + 13 dB, depended only on the quality factor (Q) of the coil and was independent of coil area and field strength. Simulations and phantom experiments showed that when the DE was higher than this minimum threshold level, the B1 field generated by the transmission coil was not modified by the receive coil. DATA CONCLUSION: The proposed criterion for assessing the DE is simple to measure, and does not depend on the area of the coil or on the magnetic field strength, up to 3T. Experimental and simulated B1 maps confirmed that detuning efficiencies above the theoretically derived minimal admissible DE resulted in a non-distorted B1 field. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
J Cardiovasc Magn Reson ; 25(1): 78, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093273

RESUMEN

BACKGROUND: While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS: MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS: The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION: The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.


Asunto(s)
Imagen de Difusión Tensora , Ventrículos Cardíacos , Humanos , Animales , Ovinos , Ventrículos Cardíacos/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Medios de Contraste , Microtomografía por Rayos X , Valor Predictivo de las Pruebas , Gadolinio , Miocitos Cardíacos/fisiología , Arritmias Cardíacas , Mamíferos
3.
Int J Hyperthermia ; 40(1): 2194595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080550

RESUMEN

PURPOSE: In presence of respiratory motion, temperature mapping is altered by in-plane and through-plane displacements between successive acquisitions together with periodic phase variations. Fast 2D Echo Planar Imaging (EPI) sequence can accommodate intra-scan motion, but limited volume coverage and inter-scan motion remain a challenge during free-breathing acquisition since position offsets can arise between the different slices. METHOD: To address this limitation, we evaluated a 2D simultaneous multi-slice EPI sequence with multiband (MB) acceleration during radiofrequency ablation on a mobile gel and in the liver of a volunteer (no heating). The sequence was evaluated in terms of resulting inter-scan motion, temperature uncertainty and elevation, potential false-positive heating and repeatability. Lastly, to account for potential through-plane motion, a 3D motion compensation pipeline was implemented and evaluated. RESULTS: In-plane motion was compensated whatever the MB factor and temperature distribution was found in agreement during both the heating and cooling periods. No obvious false-positive temperature was observed under the conditions being investigated. Repeatability of measurements results in a 95% uncertainty below 2 °C for MB1 and MB2. Uncertainty up to 4.5 °C was reported with MB3 together with the presence of aliasing artifacts. Lastly, fast simultaneous multi-slice EPI combined with 3D motion compensation reduce residual out-of-plane motion. CONCLUSION: Volumetric temperature imaging (12 slices/700 ms) could be performed with 2 °C accuracy or less, and offer tradeoffs in acquisition time or volume coverage. Such a strategy is expected to increase procedure safety by monitoring large volumes more rapidly for MR-guided thermotherapy on mobile organs.


Asunto(s)
Imagen Eco-Planar , Termometría , Humanos , Imagen Eco-Planar/métodos , Termometría/métodos , Termografía/métodos , Temperatura , Temperatura Corporal , Encéfalo , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador
4.
MAGMA ; 36(6): 877-885, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37294423

RESUMEN

OBJECTIVE: To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an image-based algorithm for automated inversion time (TI) selection. MATERIALS AND METHODS: The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions were optimized in 40 patients' scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested prospectively (5 patients) on a 1.5 T clinical scanner. RESULTS: Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss' kappa coefficient for automated-manual, intra-observer and inter-observer agreements were [Formula: see text]= 0.73, [Formula: see text] = 0.70 and [Formula: see text] = 0.63, respectively. The agreement between the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert. DISCUSSION: Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate for automated BL-LGE imaging in clinical practice.


Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Estudios Retrospectivos , Corazón/diagnóstico por imagen , Miocardio , Imagen por Resonancia Magnética/métodos
5.
Am J Physiol Heart Circ Physiol ; 322(6): H936-H952, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302879

RESUMEN

Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution.NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.


Asunto(s)
Imagen de Difusión Tensora , Tabique Interventricular , Animales , Diamante , Perros , Ventrículos Cardíacos , Mamíferos , Miocardio , Ratas , Ovinos , Porcinos , Tabique Interventricular/diagnóstico por imagen
6.
Magn Reson Med ; 86(6): 3360-3372, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34286866

RESUMEN

PURPOSE: We present in vivo testing of a parallel transmit system intended for interventional MR-guided cardiac procedures. METHODS: The parallel transmit system was connected in-line with a conventional 1.5 Tesla MRI system to transmit and receive on an 8-coil array. The system used a current sensor for real-time feedback to achieve real-time current control by determining coupling and null modes. Experiments were conducted on 4 Charmoise sheep weighing 33.9-45.0 kg with nitinol guidewires placed under X-ray fluoroscopy in the atrium or ventricle of the heart via the femoral vein. Heating tests were done in vivo and post-mortem with a high RF power imaging sequence using the coupling mode. Anatomical imaging was done using a combination of null modes optimized to produce a useable B1 field in the heart. RESULTS: Anatomical imaging produced cine images of the heart comparable in quality to imaging with the quad mode (all channels with the same amplitude and phase). Maximum observed temperature increases occurred when insulation was stripped from the wire tip. These were 4.1℃ and 0.4℃ for the coupling mode and null modes, respectively for the in vivo case; increasing to 6.0℃ and 1.3℃, respectively for the ex vivo case, because cooling from blood flow is removed. Heating < 0.1℃ was observed when insulation was not stripped from guidewire tips. In all tests, the parallel transmit system managed to reduce the temperature at the guidewire tip. CONCLUSION: We have demonstrated the first in vivo usage of an auxiliary parallel transmit system employing active feedback-based current control for interventional MRI with a conventional MRI scanner.


Asunto(s)
Imagen por Resonancia Magnética Intervencional , Animales , Diseño de Equipo , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio , Ovinos
7.
J Cardiovasc Magn Reson ; 23(1): 119, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34670572

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance T1ρ mapping may detect myocardial injuries without exogenous contrast agent. However, multiple co-registered acquisitions are required, and the lack of robust motion correction limits its clinical translation. We introduce a single breath-hold myocardial T1ρ mapping method that includes model-based non-rigid motion correction. METHODS: A single-shot electrocardiogram (ECG)-triggered balanced steady state free precession (bSSFP) 2D adiabatic T1ρ mapping sequence that collects five T1ρ-weighted (T1ρw) images with different spin lock times within a single breath-hold is proposed. To address the problem of residual respiratory motion, a unified optimization framework consisting of a joint T1ρ fitting and model-based non-rigid motion correction algorithm, insensitive to contrast change, was implemented inline for fast (~ 30 s) and direct visualization of T1ρ maps. The proposed reconstruction was optimized on an ex vivo human heart placed on a motion-controlled platform. The technique was then tested in 8 healthy subjects and validated in 30 patients with suspected myocardial injury on a 1.5T CMR scanner. The Dice similarity coefficient (DSC) and maximum perpendicular distance (MPD) were used to quantify motion and evaluate motion correction. The quality of T1ρ maps was scored. In patients, T1ρ mapping was compared to cine imaging, T2 mapping and conventional post-contrast 2D late gadolinium enhancement (LGE). T1ρ values were assessed in remote and injured areas, using LGE as reference. RESULTS: Despite breath holds, respiratory motion throughout T1ρw images was much larger in patients than in healthy subjects (5.1 ± 2.7 mm vs. 0.5 ± 0.4 mm, P < 0.01). In patients, the model-based non-rigid motion correction improved the alignment of T1ρw images, with higher DSC (87.7 ± 5.3% vs. 82.2 ± 7.5%, P < 0.01), and lower MPD (3.5 ± 1.9 mm vs. 5.1 ± 2.7 mm, P < 0.01). This resulted in significantly improved quality of the T1ρ maps (3.6 ± 0.6 vs. 2.1 ± 0.9, P < 0.01). Using this approach, T1ρ mapping could be used to identify LGE in patients with 93% sensitivity and 89% specificity. T1ρ values in injured (LGE positive) areas were significantly higher than in the remote myocardium (68.4 ± 7.9 ms vs. 48.8 ± 6.5 ms, P < 0.01). CONCLUSIONS: The proposed motion-corrected T1ρ mapping framework enables a quantitative characterization of myocardial injuries with relatively low sensitivity to respiratory motion. This technique may be a robust and contrast-free adjunct to LGE for gaining new insight into myocardial structural disorders.


Asunto(s)
Medios de Contraste , Infarto del Miocardio , Gadolinio , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Miocardio , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
8.
MAGMA ; 34(4): 605-618, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33484367

RESUMEN

OBJECTIVES: We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content. METHODS: Three fixed porcine ventricular samples were used with free-running PFs on the endocardium. T1, T2*, T2, and M0 were evaluated on 2D slices for each sample at 9.4 T. MT parameters were optimized using hard pulses with different amplitudes, offset frequencies and durations. The cardiac structure was assessed through 2D and 3D T1w images with isotropic resolutions of 150 µm. Histology, immunofluorescence, and qPCR were performed to analyze collagen contents of cardiac tissue and PF. RESULTS: An MT preparation module of 350 ms duration inserted into the sequence with a B1 = 10 µT and frequency offset = 3000 Hz showed the best contrast, approximately 0.4 between PFs and myocardium. Magnetization transfer ratio (MTR) appeared higher in the cardiac tissue (MTR = 44.7 ± 3.5%) than in the PFs (MTR = 25.2 ± 6.3%). DISCUSSION: MT significantly improves contrast between PFs and ventricular myocardium and appears promising for imaging the 3D architecture of the Purkinje network.


Asunto(s)
Imagen por Resonancia Magnética , Ramos Subendocárdicos , Animales , Imagenología Tridimensional , Ramos Subendocárdicos/diagnóstico por imagen , Porcinos
9.
MAGMA ; 34(5): 741-755, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33638739

RESUMEN

OBJECTIVE: The aim of the study is to compare structure tensor imaging (STI) with diffusion tensor imaging (DTI) of the sheep heart (approximately the same size as the human heart). MATERIALS AND METHODS: MRI acquisition on three sheep ex vivo hearts was performed at 9.4 T/30 cm with a seven-element RF coil. 3D FLASH with an isotropic resolution of 150 µm and 3D spin-echo DTI at 600 µm were performed. Tensor analysis, angles extraction and segments divisions were performed on both volumes. RESULTS: A 3D FLASH allows for visualization of the detailed structure of the left and right ventricles. The helix angle determined using DTI and STI exhibited a smooth transmural change from the endocardium to the epicardium. Both the helix and transverse angles were similar between techniques. Sheetlet organization exhibited the same pattern in both acquisitions, but local angle differences were seen and identified in 17 segments representation. DISCUSSION: This study demonstrated the feasibility of high-resolution MRI for studying the myocyte and myolaminar architecture of sheep hearts. We presented the results of STI on three whole sheep ex vivo hearts and demonstrated a good correspondence between DTI and STI.


Asunto(s)
Imagen de Difusión Tensora , Corazón , Animales , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética , Ovinos
10.
Neuroimage ; 204: 116236, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597085

RESUMEN

BACKGROUND: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety. METHOD: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al., (2017) to quantify both the displacement and temperature changes under various ultrasound sonication conditions and in different regions of the brain. The method was evaluated in vivo in a non-human primate under anesthesia using a single-element transducer (f = 850 kHz) in a setting that could mimic clinical applications. Acquisition was performed at 3 T on a clinical imaging system using a modified single-shot gradient echo EPI sequence integrating a bipolar motion-sensitive encoding gradient. Four slices were acquired sequentially perpendicularly or axially to the direction of the ultrasound beam with a 1-Hz update frequency and an isotropic spatial resolution of 2-mm. A total of twenty-four acquisitions were performed in three different sets of experiments. Measurement uncertainty of the sequence was investigated under different acoustic power deposition and in different regions of the brain. Acoustic simulation and thermal modeling were performed and compared to experimental data. RESULTS: The sequence simultaneously provides relevant information about the focal spot location and visualization of heating of brain structures: 1) The sequence localized the acoustic focus both along as well as perpendicular to the ultrasound direction. Tissue displacements ranged from 1 to 2 µm. 2) Thermal rise was only observed at the vicinity of the skull. Temperature increase ranged between 1 and 2 °C and was observed delayed relative the sonication due to thermal diffusion. 3) The fast frame rate imaging was able to highlight magnetic susceptibility artifacts related to breathing, for the most caudal slices. We demonstrated that respiratory triggering successfully restored the sensitivity of the method (from 0.7 µm to 0.2 µm). 4) These results were corroborated by acoustic simulations. CONCLUSIONS: The current rapid, multi-slice acquisition and real-time implementation of temperature and displacement visualization may be useful in clinical practices. It may help defining operational safety margins, improving therapy precision and efficacy. Simulations were in good agreement with experimental data and may thus be used prior treatment for procedure planning.


Asunto(s)
Temperatura Corporal/fisiología , Imagen Eco-Planar/métodos , Neuroimagen/métodos , Termometría/métodos , Terapia por Ultrasonido , Animales , Encéfalo , Simulación por Computador , Macaca mulatta
11.
Sensors (Basel) ; 20(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198326

RESUMEN

The increasing recognition of minimally invasive thermal treatment of tumors motivate the development of accurate thermometry approaches for guaranteeing the therapeutic efficacy and safety. Magnetic Resonance Thermometry Imaging (MRTI) is nowadays considered the gold-standard in thermometry for tumor thermal therapy, and assessment of its performances is required for clinical applications. This study evaluates the accuracy of fast MRTI on a synthetic phantom, using dense ultra-short Fiber Bragg Grating (FBG) array, as a reference. Fast MRTI is achieved with a multi-slice gradient-echo echo-planar imaging (GRE-EPI) sequence, allowing monitoring the temperature increase induced with a 980 nm laser source. The temperature distributions measured with 1 mm-spatial resolution with both FBGs and MRTI were compared. The root mean squared error (RMSE) value obtained by comparing temperature profiles showed a maximum error of 1.2 °C. The Bland-Altman analysis revealed a mean of difference of 0.1 °C and limits of agreement 1.5/-1.3 °C. FBG sensors allowed to extensively assess the performances of the GRE-EPI sequence, in addition to the information on the MRTI precision estimated by considering the signal-to-noise ratio of the images (0.4 °C). Overall, the results obtained for the GRE-EPI fully satisfy the accuracy (~2 °C) required for proper temperature monitoring during thermal therapies.


Asunto(s)
Termometría , Imagen Eco-Planar , Hipertermia Inducida , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
12.
NMR Biomed ; 32(11): e4160, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31397942

RESUMEN

BACKGROUND: Magnetic resonance (MR) thermometry allows visualization of lesion formation in real-time during cardiac radiofrequency (RF) ablation. The present study was performed to evaluate the precision of MR thermometry without RF heating in patients exhibiting cardiac arrhythmia in a clinical setting. The evaluation relied on quantification of changes in temperature measurements caused by noise and physiological motion. METHODS: Fourteen patients referred for cardiovascular magnetic resonance imaging underwent an extra sequence to test the temperature mapping stability during free-breathing acquisition. Phase images were acquired using a multi-slice, cardiac-triggered, single-shot echo planar imaging sequence. Temperature maps were calculated and displayed in real-time while the electrocardiogram (ECG) was recorded. The precision of temperature measurement was assessed by measuring the temporal standard deviation and temporal mean of consecutive temperature maps over a period of three minutes. The cardiac cycle was analyzed from ECG recordings to quantify the impact of arrhythmia events on the precision of temperature measurement. Finally, two retrospective strategies were tested to remove acquisition dynamics related either to arrhythmia events or sudden breathing motion. RESULTS: ECG synchronization allowed categorization of inter-beat intervals (RR) into distinct beat morphologies. Five patients were in stable sinus rhythm, while nine patients showed irregular RR intervals due to ectopic beats. An average temporal standard deviation of temperature of 1.6°C was observed in patients under sinus rhythm with a frame rate corresponding to the heart rate of the patient. The temporal standard deviation rose to 2.5°C in patients with arrhythmia. The retrospective rejection strategies increased the temperature precision measurement while maintaining a sufficient frame rate. CONCLUSIONS: Our results indicated that real-time cardiac MR thermometry shows good precision in patients under clinical conditions, even in the presence of arrhythmia. By providing real-time visualization of temperature distribution within the myocardium during RF delivery, MR thermometry could prevent insufficient or excessive heating and thus improve safety and efficacy.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética , Temperatura , Adolescente , Adulto , Anciano , Automatización , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Respiración , Nodo Sinoatrial/diagnóstico por imagen , Adulto Joven
13.
Int J Hyperthermia ; 34(8): 1225-1235, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29378441

RESUMEN

INTRODUCTION: Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) treatments of mobile organs require locking the HIFU beam on the targeted tissue to maximise heating efficiency. We propose to use a standalone 3 D ultrasound (US)-based motion correction technique using the HIFU transducer in pulse-echo mode. Validation of the method was performed in vitro and in vivo in the liver of pig under MR-thermometry. METHODS: 3 D-motion estimation was implemented using ultrasonic speckle-tracking between consecutive acquisitions. Displacement was estimated along four sub-apertures of the HIFU transducer by computing the normalised cross-correlation of backscattered signals followed by a triangulation algorithm. The HIFU beam was steered accordingly and energy was delivered under real-time MR-thermometry (using the proton resonance frequency shift method with online motion compensation and correction of associated susceptibility artefacts). An MR-navigator echo was used to assess the quality of the US-based motion correction. RESULTS: Displacement estimations from US measurements were in good agreement with 1 D MR-navigator echo readings. In vitro, the maximum temperature increase was improved by 37% as compared to experiments performed without motion correction and temperature distribution remained much more focussed. Similar results were reported in vivo, with an increase of 35% on the maximum temperature using this US-based HIFU target locking. CONCLUSION: This standalone 3D US-based motion correction technique is robust and allows maintaining the HIFU focal spot in the presence of motion without adding any burden or complexity to MR thermal imaging. In vitro and in vivo results showed about 35% improvement in heating efficiency when focus position was locked on the target using the proposed technique.


Asunto(s)
Hígado/diagnóstico por imagen , Hígado/cirugía , Animales , Ultrasonido Enfocado de Alta Intensidad de Ablación , Imagen por Resonancia Magnética , Porcinos , Ultrasonografía/métodos
14.
Magn Reson Med ; 78(5): 1911-1921, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28090656

RESUMEN

PURPOSE: The therapy endpoint most commonly used in MR-guided high intensity focused ultrasound is the thermal dose. Although namely correlated with nonviable tissue, it does not account for changes in mechanical properties of tissue during ablation. This study presents a new acquisition sequence for multislice, subsecond and simultaneous imaging of tissue temperature and displacement during ablation. METHODS: A single-shot echo planar imaging sequence was implemented using a pair of motion-encoding gradients, with alternated polarities. A first ultrasound pulse was synchronized on the second lobe of the motion-encoding gradients and followed by continuous sonication to induce a local temperature increase in ex vivo muscle and in vivo on pig liver. Lastly, the method was evaluated in the brain of two volunteers to assess method's precision. RESULTS: For thermal doses higher than the lethal threshold, displacement amplitude was reduced by 21% and 28% at the focal point in muscle and liver, respectively. Displacement value remained nearly constant for nonlethal thermal doses values. The mean standard deviation of temperature and displacement in the brain of volunteers remained below 0.8 °C and 2.5 µm. CONCLUSION: This new fast imaging sequence provides real-time measurement of temperature distribution and displacement at the focus during HIFU ablation. Magn Reson Med 78:1911-1921, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Cirugía Asistida por Computador/métodos , Termografía/métodos , Animales , Temperatura Corporal , Encéfalo/diagnóstico por imagen , Humanos , Hígado/diagnóstico por imagen , Porcinos
15.
Magn Reson Med ; 77(2): 673-683, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26899165

RESUMEN

PURPOSE: A new real-time MR-thermometry pipeline was developed to measure multiple temperature images per heartbeat with 1.6×1.6×3 mm3 spatial resolution. The method was evaluated on 10 healthy volunteers and during radiofrequency ablation (RFA) in sheep. METHODS: Multislice, electrocardiogram-triggered, echo-planar imaging was combined with parallel imaging, under free breathing conditions. In-plane respiratory motion was corrected on magnitude images by an optical flow algorithm. Motion-related susceptibility artifacts were compensated on phase images by an algorithm based on Principal Component Analysis. Correction of phase drift and temporal filter were included in the pipeline implemented in the Gadgetron framework. Contact electrograms were recorded simultaneously with MR thermometry by an MR-compatible ablation catheter. RESULTS: The temporal standard deviation of temperature in the left ventricle remained below 2 °C on each volunteer. In sheep, focal heated regions near the catheter tip were observed on temperature images (maximal temperature increase of 38 °C) during RFA, with contact electrograms of acceptable quality. Thermal lesion dimensions at gross pathology were in agreement with those observed on thermal dose images. CONCLUSION: This fully automated MR thermometry pipeline (five images/heartbeat) provides direct assessment of lesion formation in the heart during catheter-based RFA, which may improve treatment of cardiac arrhythmia by ablation. Magn Reson Med 77:673-683, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Ablación por Catéter/métodos , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cirugía Asistida por Computador/métodos , Termometría/métodos , Adulto , Algoritmos , Animales , Arritmias Cardíacas/cirugía , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Planificación de la Radioterapia Asistida por Computador , Ovinos , Procesamiento de Señales Asistido por Computador
16.
Respir Res ; 18(1): 47, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28288643

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension that combines multiple alterations of pulmonary arteries, including, in particular, thrombotic and plexiform lesions. Multiple-pathological-insult animal models, developed to more closely mimic this human severe PAH form, often require complex and/or long experimental procedures while not displaying the entire panel of characteristic lesions observed in the human disease. In this study, we further characterized a rat model of severe PAH generated by combining a single injection of monocrotaline with 4 weeks exposure to chronic hypoxia. This model displays increased pulmonary arterial pressure, right heart altered function and remodeling, pulmonary arterial inflammation, hyperresponsiveness and remodeling. In particular, severe pulmonary arteriopathy was observed, with thrombotic, neointimal and plexiform-like lesions similar to those observed in human severe PAH. This model, based on the combination of two conventional procedures, may therefore be valuable to further understand the pathophysiology of severe PAH and identify new potential therapeutic targets in this disease.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Hipoxia/fisiopatología , Arteria Pulmonar/fisiopatología , Animales , Presión Arterial , Enfermedad Crónica , Humanos , Masculino , Monocrotalina , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Resistencia Vascular/efectos de los fármacos
17.
J Cardiovasc Magn Reson ; 19(1): 14, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28143574

RESUMEN

BACKGROUND: Clinical treatment of cardiac arrhythmia by radiofrequency ablation (RFA) currently lacks quantitative and precise visualization of lesion formation in the myocardium during the procedure. This study aims at evaluating thermal dose (TD) imaging obtained from real-time magnetic resonance (MR) thermometry on the heart as a relevant indicator of the thermal lesion extent. METHODS: MR temperature mapping based on the Proton Resonance Frequency Shift (PRFS) method was performed at 1.5 T on the heart, with 4 to 5 slices acquired per heartbeat. Respiratory motion was compensated using navigator-based slice tracking. Residual in-plane motion and related magnetic susceptibility artifacts were corrected online. The standard deviation of temperature was measured on healthy volunteers (N = 5) in both ventricles. On animals, the MR-compatible catheter was positioned and visualized in the left ventricle (LV) using a bSSFP pulse sequence with active catheter tracking. Twelve MR-guided RFA were performed on three sheep in vivo at various locations in left ventricle (LV). The dimensions of the thermal lesions measured on thermal dose images, on 3D T1-weighted (T1-w) images acquired immediately after the ablation and at gross pathology were correlated. RESULTS: MR thermometry uncertainty was 1.5 °C on average over more than 96% of the pixels covering the left and right ventricles, on each volunteer. On animals, catheter repositioning in the LV with active slice tracking was successfully performed and each ablation could be monitored in real-time by MR thermometry and thermal dosimetry. Thermal lesion dimensions on TD maps were found to be highly correlated with those observed on post-ablation T1-w images (R = 0.87) that also correlated (R = 0.89) with measurements at gross pathology. CONCLUSIONS: Quantitative TD mapping from real-time rapid CMR thermometry during catheter-based RFA is feasible. It provides a direct assessment of the lesion extent in the myocardium with precision in the range of one millimeter. Real-time MR thermometry and thermal dosimetry may improve safety and efficacy of the RFA procedure by offering a reliable indicator of therapy outcome during the procedure.


Asunto(s)
Ablación por Catéter , Imagen por Resonancia Cinemagnética , Miocardio/patología , Termometría/métodos , Animales , Artefactos , Temperatura Corporal , Catéteres Cardíacos , Ablación por Catéter/instrumentación , Estudios de Factibilidad , Frecuencia Cardíaca , Humanos , Modelos Animales , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Mecánica Respiratoria , Oveja Doméstica , Termometría/instrumentación , Factores de Tiempo
18.
Europace ; 19(3): 458-464, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26896467

RESUMEN

AIMS: Interventional cardiac catheter mapping is routinely guided by X-ray fluoroscopy, although radiation exposure remains a significant concern. Feasibility of catheter ablation for common flutter has recently been demonstrated under magnetic resonance imaging (MRI) guidance. The benefit of catheter ablation under MRI could be significant for complex arrhythmias such as atrial fibrillation (AF), but MRI-compatible multi-electrode catheters such as Lasso have not yet been developed. This study aimed at demonstrating the feasibility and safety of using a multi-electrode catheter [magnetic resonance (MR)-compatible Lasso] during MRI for cardiac mapping. We also aimed at measuring the level of interference between MR and electrophysiological (EP) systems. METHODS AND RESULTS: Experiments were performed in vivo in sheep (N = 5) using a multi-electrode, circular, steerable, MR-compatible diagnostic catheter. The most common MRI sequences (1.5T) relevant for cardiac examination were run with the catheter positioned in the right atrium. High-quality electrograms were recorded while imaging with a maximal signal-to-noise ratio (peak-to-peak signal amplitude/peak-to-peak noise amplitude) ranging from 5.8 to 165. Importantly, MRI image quality was unchanged. Artefacts induced by MRI sequences during mapping were demonstrated to be compatible with clinical use. Phantom data demonstrated that this 10-pole circular catheter can be used safely with a maximum of 4°C increase in temperature. CONCLUSIONS: This new MR-compatible 10-pole catheter appears to be safe and effective. Combining MR and multipolar EP in a single session offers the possibility to correlate substrate information (scar, fibrosis) and EP mapping as well as online monitoring of lesion formation and electrical endpoint.


Asunto(s)
Cateterismo Cardíaco/instrumentación , Catéteres Cardíacos , Técnicas Electrofisiológicas Cardíacas/instrumentación , Imagen por Resonancia Magnética , Animales , Artefactos , Cateterismo Cardíaco/efectos adversos , Catéteres Cardíacos/efectos adversos , Técnicas Electrofisiológicas Cardíacas/efectos adversos , Diseño de Equipo , Falla de Equipo , Estudios de Factibilidad , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/instrumentación , Ensayo de Materiales , Modelos Animales , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Oveja Doméstica , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
19.
Am J Physiol Heart Circ Physiol ; 310(10): H1371-80, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26968545

RESUMEN

To provide a model close to the human heart, and to study intrinsic cardiac function at the same time as electromechanical coupling, we developed a magnetic resonance (MR)-compatible setup of isolated working perfused pig hearts. Hearts from pigs (40 kg, n = 20) and sheep (n = 1) were blood perfused ex vivo in the working mode with and without loaded right ventricle (RV), for 80 min. Cardiac function was assessed by measuring left intraventricular pressure and left ventricular (LV) ejection fraction (LVEF), aortic and mitral valve dynamics, and native T1 mapping with MR imaging (1.5 Tesla). Potential myocardial alterations were assessed at the end of ex vivo perfusion from late-Gadolinium enhancement T1 mapping. The ex vivo cardiac function was stable across the 80 min of perfusion. Aortic flow and LV-dP/dtmin were significantly higher (P < 0.05) in hearts perfused with loaded RV, without differences for heart rate, maximal and minimal LV pressure, LV-dP/dtmax, LVEF, and kinetics of aortic and mitral valves. T1 mapping analysis showed a spatially homogeneous distribution over the LV. Simultaneous recording of hemodynamics, LVEF, and local cardiac electrophysiological signals were then successfully performed at baseline and during electrical pacing protocols without inducing alteration of MR images. Finally, (31)P nuclear MR spectroscopy (9.4 T) was also performed in two pig hearts, showing phosphocreatine-to-ATP ratio in accordance with data previously reported in vivo. We demonstrate the feasibility to perfuse isolated pig hearts in the working mode, inside an MR environment, allowing simultaneous assessment of cardiac structure, mechanics, and electrophysiology, illustrating examples of potential applications.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Metabolismo Energético , Corazón/fisiología , Hemodinámica , Preparación de Corazón Aislado/métodos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Miocardio/metabolismo , Perfusión , Potenciales de Acción , Adenosina Trifosfato/metabolismo , Animales , Presión Arterial , Estudios de Factibilidad , Frecuencia Cardíaca , Cinética , Fosfocreatina/metabolismo , Oveja Doméstica , Volumen Sistólico , Sus scrofa , Función Ventricular Izquierda , Función Ventricular Derecha , Presión Ventricular
20.
Sci Rep ; 13(1): 3279, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841878

RESUMEN

Precise control of tissue temperature during Laser-Induced Thermotherapy (LITT) procedures has the potential to improve the clinical efficiency and safety of such minimally invasive therapies. We present a method to automatically regulate in vivo the temperature increase during LITT using real-time rapid volumetric Magnetic Resonance thermometry (8 slices acquired every second, with an in-plane resolution of 1.4 mmx1.4 mm and a slice thickness of 3 mm) using the proton-resonance frequency (PRF) shift technique. The laser output power is adjusted every second using a feedback control algorithm (proportional-integral-derivative controller) to force maximal tissue temperature in the targeted region to follow a predefined temperature-time profile. The root-mean-square of the difference between the target temperature and the measured temperature ranged between 0.5 °C and 1.4 °C, for temperature increases between + 5 °C to + 30 °C above body temperature and a long heating duration (up to 15 min), showing excellent accuracy and stability of the method. These results were obtained on a 1.5 T clinical MRI scanner, showing a potential immediate clinical application of such a temperature controller during MR-guided LITT.


Asunto(s)
Hipertermia Inducida , Terapia por Láser , Temperatura , Terapia por Láser/métodos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA