Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570189

RESUMEN

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Asunto(s)
Amaurosis Congénita de Leber , Retinitis Pigmentosa , Animales , Humanos , Pez Cebra/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Portadoras/metabolismo
2.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499084

RESUMEN

Autosomal dominant disorders present unique challenges, as therapeutics must often distinguish between healthy and diseased alleles while maintaining high efficiency, specificity, and safety. For this task, CRISPR/Cas remains particularly promising. Various CRISPR/Cas systems, like homology-directed repair, base editors, and prime editors, have been demonstrated to selectively edit mutant alleles either by incorporating these mutations into sgRNA sequences (near the protospacer-adjacent motif ["near the PAM"]) or by targeting a novel PAM generated by the mutation ("in the PAM"). However, these probability-based designs are not always assured, necessitating generalized, mutation-agnostic strategies like ablate-and-replace and single-nucleotide polymorphism editing. Here, we detail recent advancements in CRISPR therapeutics to treat a wide range of autosomal dominant disorders and discuss how they are altering the landscape for future therapies.


Asunto(s)
Sistemas CRISPR-Cas , Alelos , Mutación
3.
J Clin Invest ; 130(8): 3971-3973, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32657778

RESUMEN

Retinitis pigmentosa (RP), the most common form of rod-cone dystrophy, is caused by greater than 3100 mutations in more than 71 genes, many of which are preferentially expressed in rod photoreceptors. Cone death generally follows rod loss regardless of the underlying pathogenic mutation. Preventing the secondary loss of cone photoreceptors would preserve central visual acuity and substantially improve patients' quality of life. In this issue of the JCI, Wang et al. demonstrate that adeno-associated virus-mediated overexpression of TGF-ß1 promoted cone survival and function in 3 distinct RP models with rod-specific mutations. TGF-ß1 induces microglia to metabolically tune from a glycolytic phenotype (M1) to an oxidative phenotype (M2), which associates with neuroprotection and the antiinflammatory ecosystem. Consolidating the results of this study with our current understanding of how TGF-ß1 regulates microglia polarization, we highlight cell-specific metabolome reprogramming as a promising non-gene-specific therapeutic avenue for inherited retinal degenerations.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Ecosistema , Humanos , Metaboloma , Ratones , Microglía , Calidad de Vida , Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA