Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 101(1): 37-92, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32380895

RESUMEN

The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ?what makes the heart tick.Ë®.


Asunto(s)
Frecuencia Cardíaca/fisiología , Corazón/fisiología , Estimulación Física , Animales , Arritmias Cardíacas/fisiopatología , Relojes Biológicos , Humanos , Miocardio/citología , Miocitos Cardíacos/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-37877156

RESUMEN

During the early stages of limb and fin regeneration in aquatic vertebrates (i.e., fishes and amphibians), blastema undergo transcriptional rewiring of innate immune signaling pathways to promote immune cell recruitment. In mammals, a fundamental component of innate immune signaling is the cytosolic DNA sensing pathway, cGAS-STING. However, to what extent the cGAS-STING pathway influences regeneration in aquatic anamniotes is unknown. In jawed vertebrates, negative regulation of cGAS-STING activity is accomplished by suppressors of cytosolic DNA such as Trex1, Pml, and PML-like exon 9 (Plex9) exonucleases. Here, we examine the expression of these suppressors of cGAS-STING, as well as inflammatory genes and cGAS activity during caudal fin and limb regeneration using the spotted gar (Lepisosteus oculatus) and axolotl (Ambystoma mexicanum) model species, and during age-related senescence in zebrafish (Danio rerio). In the regenerative blastema of wounded gar and axolotl, we observe increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We also observed a decrease in axolotl Trex1 and gar pml expression during the early phases of wound healing which correlates with a dramatic increase in cGAS activity. In contrast, the plex9.1 gene does not change in expression during wound healing in gar. However, we observed decreased expression of plex9.1 in the senescing cardiac tissue of aged zebrafish, where 2'3'-cGAMP levels are elevated. Finally, we demonstrate a similar pattern of Trex1, pml, and plex9.1 gene regulation across species in response to exogenous 2'3'-cGAMP. Thus, during the early stages of limb-fin regeneration, Pml, Trex1, and Plex9.1 exonucleases are downregulated, presumably to allow an evolutionarily ancient cGAS-STING activity to promote inflammation and the recruitment of immune cells.

3.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
4.
Cell Mol Life Sci ; 78(19-20): 6669-6687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34557935

RESUMEN

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-ß, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.


Asunto(s)
Genoma/genética , Válvulas Cardíacas/fisiología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Genómica/métodos , Defectos de los Tabiques Cardíacos/genética , Miocardio/patología , Organogénesis/genética , Marcapaso Artificial , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/genética
5.
Proc Natl Acad Sci U S A ; 113(51): 14852-14857, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930302

RESUMEN

Electrophysiological studies of excitable organs usually focus on action potential (AP)-generating cells, whereas nonexcitable cells are generally considered as barriers to electrical conduction. Whether nonexcitable cells may modulate excitable cell function or even contribute to AP conduction via direct electrotonic coupling to AP-generating cells is unresolved in the heart: such coupling is present in vitro, but conclusive evidence in situ is lacking. We used genetically encoded voltage-sensitive fluorescent protein 2.3 (VSFP2.3) to monitor transmembrane potential in either myocytes or nonmyocytes of murine hearts. We confirm that VSFP2.3 allows measurement of cell type-specific electrical activity. We show that VSFP2.3, expressed solely in nonmyocytes, can report cardiomyocyte AP-like signals at the border of healed cryoinjuries. Using EM-based tomographic reconstruction, we further discovered tunneling nanotube connections between myocytes and nonmyocytes in cardiac scar border tissue. Our results provide direct electrophysiological evidence of heterocellular electrotonic coupling in native myocardium and identify tunneling nanotubes as a possible substrate for electrical cell coupling that may be in addition to previously discovered connexins at sites of myocyte-nonmyocyte contact in the heart. These findings call for reevaluation of cardiac nonmyocyte roles in electrical connectivity of the heterocellular heart.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Miocardio/citología , Miocitos Cardíacos/metabolismo , Optogenética , Potenciales de Acción , Animales , Proteínas Bacterianas/metabolismo , Comunicación Celular , Recuento de Células , Membrana Celular/metabolismo , Conductividad Eléctrica , Femenino , Fibroblastos/metabolismo , Corazón/fisiología , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Células Musculares/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 311(3): H676-88, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342878

RESUMEN

The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic ß2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons.


Asunto(s)
Nodo Atrioventricular/inervación , Corazón/inervación , Sistema Nervioso Parasimpático/fisiología , Nodo Sinoatrial/inervación , Sistema Nervioso Simpático/fisiología , Antagonistas Adrenérgicos beta/farmacología , Animales , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/fisiología , Nodo Atrioventricular/fisiopatología , Atropina/farmacología , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Bradicardia/fisiopatología , Electrocardiografía , Corazón/efectos de los fármacos , Corazón/fisiología , Corazón/fisiopatología , Frecuencia Cardíaca , Hexametonio/farmacología , Preparación de Corazón Aislado , Isoproterenol/farmacología , Modelos Animales , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Sistema Nervioso Parasimpático/efectos de los fármacos , Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiología , Nodo Sinoatrial/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Simpatomiméticos/farmacología , Taquicardia/fisiopatología , Timolol/farmacología , Estimulación del Nervio Vago , Pez Cebra
8.
Europace ; 18(suppl 4): iv85-iv93, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28011835

RESUMEN

AIMS: Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. METHODS AND RESULTS: Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. CONCLUSION: In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation.


Asunto(s)
Estimulación Cardíaca Artificial/métodos , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca , Corazón/inervación , Preparación de Corazón Aislado , Potenciales de Acción , Animales , Estimulación Cardíaca Artificial/efectos adversos , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Femenino , Recuperación de la Función , Factores de Tiempo , Función Ventricular Izquierda , Presión Ventricular , Imagen de Colorante Sensible al Voltaje
9.
Genes (Basel) ; 15(3)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540339

RESUMEN

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Asunto(s)
Bloqueo Atrioventricular , Calcio , Adulto , Animales , Humanos , Calcio/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Nodo Atrioventricular/metabolismo , Técnicas Electrofisiológicas Cardíacas/efectos adversos , Bloqueo Atrioventricular/complicaciones , Arritmias Cardíacas/genética , Trastorno del Sistema de Conducción Cardíaco
10.
J Ultrasound Med ; 32(4): 675-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23525394

RESUMEN

OBJECTIVES: Biventricular pacing may ameliorate symptoms of acute heart failure. Speckle-tracking echocardiography can assess cardiac function to elucidate mechanisms of benefit. Accordingly, radial and circumferential strain and radial and circumferential strain synchrony were measured with speckle-tracking echocardiography during biventricular pacing in a model of left ventricular (LV) volume overload. METHODS: Heart block was established in 4 open-chest anesthetized pigs. Left ventricular volume overload was induced with an ascending aorta-LV apex conduit. Measurements included cardiac output by an aortic flow probe, the maximum derivative of LV pressure versus time (dP/dtmax), and transseptal pressure synchrony. Biventricular pacing was performed for combinations of 3 interventricular delays and 3 LV pacing sites. Speckle-tracking echocardiographic analysis was applied to short-axis images at the midpapillary LV for 9 pacing combinations. Strain and synchrony parameters were correlated with hemodynamics. RESULTS: Increased cardiac output correlated with improved global circumferential strain (P = .002) but not changes in global radial strain or radial strain synchrony. Increased LV dP/dtmax was associated with improved circumferential strain in the septum (P < .001) and radial strain in the lateral wall (P = .046). Improved transseptal pressure synchrony was associated with improved global circumferential strain, but primarily in the septum (P < .001). Aortic valve closure occurred before peak radial strain in 62% of beats and before peak circumferential strain in 6%. CONCLUSIONS: During acute LV volume overload, hemodynamic improvement with biventricular pacing was associated with improved circumferential strain primarily in the septum. Radial strain and radial strain synchrony did not correlate with improvement, possibly due to delayed systolic contraction. An increase in circumferential strain in the septum associated with optimum transseptal pressure synchrony suggested improvement by interventricular assist from the right ventricle.


Asunto(s)
Terapia de Resincronización Cardíaca , Modelos Animales de Enfermedad , Ecocardiografía/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Animales , Gasto Cardíaco , Tabiques Cardíacos/fisiopatología , Masculino , Porcinos , Presión Ventricular
11.
Front Physiol ; 14: 1086050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007999

RESUMEN

In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as "mechano-electric coupling" and "mechano-mechanical coupling." Whether this occurs during cardiac development is ill-defined, as acutely altering the heart's mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.

12.
Biomed Mater ; 18(2)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801856

RESUMEN

Microtissues in the shape of toroidal rings provide an ideal geometry to better represent the structure and function of the airway smooth muscle present in the small airways, and to better understand diseases such as asthma. Here, polydimethylsiloxane devices consisting of a series of circular channels surrounding central mandrels are used to form microtissues in the shape of toroidal rings by way of the self-aggregation and -assembly of airway smooth muscle cell (ASMC) suspensions. Over time, the ASMCs present in the rings become spindle-shaped and axially align along the ring circumference. Ring strength and elastic modulus increase over 14 d in culture, without significant changes in ring size. Gene expression analysis indicates stable expression of mRNA for extracellular matrix-associated proteins, including collagen I and lamininsα1 andα4 over 21 d in culture. Cells within the rings respond to TGF-ß1 treatment, leading to dramatic decreases in ring circumference, with increases in mRNA and protein levels for extracellular matrix and contraction-associated markers. These data demonstrate the utility of ASMC rings as a platform for modeling diseases of the small airways such as asthma.


Asunto(s)
Asma , Músculo Liso , Humanos , Células Cultivadas , Músculo Liso/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Asma/metabolismo , Proteínas de la Matriz Extracelular , Miocitos del Músculo Liso , ARN Mensajero/metabolismo
13.
Europace ; 14 Suppl 5: v73-v81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23104918

RESUMEN

AIM: The human coronary tree is commonly assumed to have two roots: the left and right coronary arteries (LCA and RCA, respectively). However, a third coronary artery (TCA) has been observed in humans and animals, usually arising from the right anterior aortic sinus near the RCA. Using high-resolution magnetic resonance imaging, we identified TCA prevalence and characteristics in rabbit and human hearts. METHODS AND RESULTS: Third coronary artery presence was analysed in hearts from 11 New Zealand white rabbits and 7 human cadavers, using excised tissue that was fixed, gadolinium-treated, and agar-embedded for imaging-based reconstruction. A TCA was identified in all rabbit hearts and six of seven human hearts, originating either from an independent ostium (7 of 11 rabbits, 2 of 7 humans) or an ostium shared with the RCA (4 of 11 rabbits, 4 of 7 humans). Proximal TCA cross-sectional area in rabbits was 15.3 ± 6.0% of RCA area (mean ± SD, based on n = 9 rabbit hearts in which reliable measurements could be taken for both vessels), and 26.7 ± 10.1% in humans (n = 4). In all-but-one case where a TCA was observed, it originated ventral to the RCA, progressing towards the right ventricular outflow tract. In one rabbit, the TCA originated dorsal to the RCA and progressed towards the Crista terminalis in the right atrium. A fourth vessel, forming a separate aortic Vas vasorum was occasionally seen, originating from the right anterior aortic sinus either from an ostium common with (1 of 11 rabbits, 0 of 7 humans) or independent of (1 of 11 rabbits, 1 of 7 humans) the TCA. Pilot optical mapping experiments showed that TCA occlusion had variable acute effects on rabbit cardiac electrophysiology. CONCLUSION: Third coronary artery presence is common in rabbit and human hearts. Functional effects of disrupted TCA blood supply are ill-investigated, and the rabbit may be a suitable species for such research.


Asunto(s)
Anomalías de los Vasos Coronarios/patología , Anomalías de los Vasos Coronarios/fisiopatología , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Imagen por Resonancia Magnética/métodos , Microscopía/métodos , Animales , Femenino , Humanos , Conejos , Resistencia Vascular
14.
J Cardiothorac Vasc Anesth ; 26(2): 209-16, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22000982

RESUMEN

OBJECTIVES: Atrioventricular conduction prolongation (AVCP) in cardiac pacing is measurable and results primarily from delayed atrial conduction. Noninvasive methods for measuring atrial conduction are lacking. Accordingly, AVCP was used to estimate atrial conduction and investigate its role on the paced atrioventricular delay (pAVD) during biventricular pacing (BiVP) optimization. DESIGN: Retrospective analysis of data collected as part of a randomized controlled study of temporary BiVP after cardiopulmonary bypass. SETTING: Single-center study at university-affiliated tertiary care hospital. PARTICIPANTS: Cardiac surgical patients at risk of left ventricular failure after cardiopulmonary bypass. INTERVENTIONS: Temporary BiVP was optimized immediately after cardiopulmonary bypass. Vasoactive medication and fluid infusion rates were held constant during optimization. MEASUREMENTS AND MAIN RESULTS: For each patient the AVCP and the pAVD producing the optimum (highest) cardiac output (OptCO) and mean arterial pressure (OptMAP) were determined. Patients were stratified into long- and short-AVCP groups. Overall AVCP (mean ± standard deviation) was 64 ± 28 ms. For the short-AVCP group (<64 ms, n = 3), AVCP, OptCO, and OptMAP were 40 ± 11, 120 ± 0, and 150 ± 30 ms, respectively, and for the long-AVCP group (>64 ms, n = 4), these same parameters were 89 ± 10, 218 ± 44, and 218 ± 29 ms. OptCO and OptMAP were significantly less in the short-AVCP group (p = 0.015 and p = 0.029, respectively). CONCLUSIONS: AVCP varies widely after cardiopulmonary bypass, affecting optimum pAVD. Failure to correct for this can result in the selection of inappropriately short and potentially deleterious pAVDs, especially when nominal pAVD is used, causing BiVP to appear ineffective.


Asunto(s)
Nodo Atrioventricular/fisiología , Terapia de Resincronización Cardíaca/métodos , Puente Cardiopulmonar/efectos adversos , Sistema de Conducción Cardíaco/fisiología , Anciano , Anciano de 80 o más Años , Terapia de Resincronización Cardíaca/normas , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento
15.
Eur Heart J ; 32(12): 1435-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21815299

RESUMEN

A second right coronary artery is not at all unusual, as described here from Oxford, England.


Asunto(s)
Vasos Coronarios/anatomía & histología , Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Humanos , Seno Aórtico/anatomía & histología
16.
Front Physiol ; 13: 818122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295582

RESUMEN

Cardiac excitation originates in the sinoatrial node (SAN), due to the automaticity of this distinct region of the heart. SAN automaticity is the result of a gradual depolarisation of the membrane potential in diastole, driven by a coupled system of transarcolemmal ion currents and intracellular Ca2+ cycling. The frequency of SAN excitation determines heart rate and is under the control of extra- and intracardiac (extrinsic and intrinsic) factors, including neural inputs and responses to tissue stretch. While the structure, function, and control of the SAN have been extensively studied in mammals, and some critical aspects have been shown to be similar in zebrafish, the specific drivers of zebrafish SAN automaticity and the response of its excitation to vagal nerve stimulation and mechanical preload remain incompletely understood. As the zebrafish represents an important alternative experimental model for the study of cardiac (patho-) physiology, we sought to determine its drivers of SAN automaticity and the response to nerve stimulation and baseline stretch. Using a pharmacological approach mirroring classic mammalian experiments, along with electrical stimulation of intact cardiac vagal nerves and the application of mechanical preload to the SAN, we demonstrate that the principal components of the coupled membrane- Ca2+ pacemaker system that drives automaticity in mammals are also active in the zebrafish, and that the effects of extra- and intracardiac control of heart rate seen in mammals are also present. Overall, these results, combined with previously published work, support the utility of the zebrafish as a novel experimental model for studies of SAN (patho-) physiological function.

17.
J Cardiothorac Vasc Anesth ; 25(2): 238-42, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20638864

RESUMEN

OBJECTIVE: To assess the stability of cardiac output, mean arterial pressure, and systemic vascular resistance during biventricular pacing (BiVP) optimization. DESIGN: Substudy analysis of data collected as part of a randomized controlled study examining the effects of optimized temporary BiVP after cardiopulmonary bypass (CPB). SETTING: A single-center study at a university-affiliated tertiary care hospital. PARTICIPANTS: Cardiac surgery patients at risk of left ventricular failure after CPB. INTERVENTIONS: BiVP was optimized immediately after CPB. Atrioventricular delay (7 unique settings) was optimized first, followed by the left ventricular pacing site (3 unique settings) and then the interventricular delay (9 unique settings). Each setting was tested twice for 10 seconds each time. Vasoactive medication and fluid infusion rates were held constant. MEASUREMENTS AND MAIN RESULTS: Aortic flow velocity and radial artery pressure were digitized, recorded, and averaged over single respiratory cycles. Least squares and linear regression/Wilcoxon analyses were applied to the first 7 patients studied. Subsequently, curvilinear analysis was applied to 15 patients. Changes in mean arterial pressure and systemic vascular resistance were statistically insignificant or too small to be meaningful by least squares analysis. During interventricular synchrony optimization, cardiac output and mean arterial pressure decreased (mean changes -5.7% and -2.5%, respectively; with standard errors 2.3% and 1.5%, respectively), whereas SVR increased (mean change 3.1% with standard error 3.4%). Only the change in cardiac output was statistically significant (p = 0.043). Curvilinear fits to data for 15 patients demonstrated progressive hemodynamic stability over the total testing period. CONCLUSION: BiVP optimization may be done safely in patients after CPB. With continuous monitoring of mean arterial pressure and cardiac output, the procedure results in no harmful hemodynamic perturbation.


Asunto(s)
Terapia de Resincronización Cardíaca/métodos , Puente Cardiopulmonar/métodos , Hemodinámica/fisiología , Anciano , Gasto Cardíaco/fisiología , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/fisiopatología , Complicaciones Posoperatorias/prevención & control
18.
Biophys Rev ; 13(5): 707-716, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34777615

RESUMEN

The rhythmic and spontaneously generated electrical excitation that triggers the heartbeat originates in the sinoatrial node (SAN). SAN automaticity has been thoroughly investigated, which has uncovered fundamental mechanisms involved in cardiac pacemaking that are generally categorised into two interacting and overlapping systems: the 'membrane' and 'Ca2+ clock'. The principal focus of research has been on these two systems of oscillators, which have been studied primarily in single cells and isolated tissue, experimental preparations that do not consider mechanical factors present in the whole heart. SAN mechano-sensitivity has long been known to be a contributor to SAN pacemaking-both as a driver and regulator of automaticity-but its essential nature has been underappreciated. In this review, following a description of the traditional 'clocks' of SAN automaticity, we describe mechanisms of SAN mechano-sensitivity and its vital role for SAN function, making the argument that the 'mechanics oscillator' is, in fact, the 'grandfather clock' of cardiac rhythm.

19.
J Cardiovasc Dev Dis ; 8(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34821702

RESUMEN

The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.

20.
Front Physiol ; 12: 748570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002753

RESUMEN

Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins ("reporters" and "actuators"), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA