Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiat Environ Biophys ; 57(1): 5-15, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247291

RESUMEN

MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).


Asunto(s)
Comunicación Interdisciplinaria , Dosis de Radiación , Radiobiología/métodos , Humanos , Exposición a la Radiación , Tolerancia a Radiación , Medición de Riesgo
2.
J Radiol Prot ; 34(4): 931-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25431966

RESUMEN

MELODI is the European platform dedicated to low-dose radiation risk research. From 7 October through 10 October 2013 the Fifth MELODI Workshop took place in Brussels, Belgium. The workshop offered the opportunity to 221 unique participants originating from 22 countries worldwide to update their knowledge and discuss radiation research issues through 118 oral and 44 poster presentations. In addition, the MELODI 2013 workshop was reaching out to the broader radiation protection community, rather than only the low-dose community, with contributions from the fields of radioecology, emergency and recovery preparedness, and dosimetry. In this review, we summarise the major scientific conclusions of the workshop, which are important to keep the MELODI strategic research agenda up-to-date and which will serve to establish a joint radiation protection research roadmap for the future.


Asunto(s)
Investigación Biomédica/tendencias , Traumatismos por Radiación/prevención & control , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Liberación de Radiactividad Peligrosa/prevención & control , Europa (Continente) , Humanos , Gestión de Riesgos/métodos
3.
Gut ; 58(12): 1612-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19700435

RESUMEN

BACKGROUND AND AIMS: Infliximab is an effective treatment for ulcerative colitis with over 60% of patients responding to treatment and up to 30% reaching remission. The mechanism of resistance to anti-tumour necrosis factor alpha (anti-TNFalpha) is unknown. This study used colonic mucosal gene expression to provide a predictive response signature for infliximab treatment in ulcerative colitis. METHODS: Two cohorts of patients who received their first treatment with infliximab for refractory ulcerative colitis were studied. Response to infliximab was defined as endoscopic and histological healing. Total RNA from pre-treatment colonic mucosal biopsies was analysed with Affymetrix Human Genome U133 Plus 2.0 Arrays. Quantitative RT-PCR was used to confirm microarray data. RESULTS: For predicting response to infliximab treatment, pre-treatment colonic mucosal expression profiles were compared for responders and non-responders. Comparative analysis identified 179 differentially expressed probe sets in cohort A and 361 in cohort B with an overlap of 74 probe sets, representing 53 known genes, between both analyses. Comparative analysis of both cohorts combined, yielded 212 differentially expressed probe sets. The top five differentially expressed genes in a combined analysis of both cohorts were osteoprotegerin, stanniocalcin-1, prostaglandin-endoperoxide synthase 2, interleukin 13 receptor alpha 2 and interleukin 11. All proteins encoded by these genes are involved in the adaptive immune response. These markers separated responders from non-responders with 95% sensitivity and 85% specificity. CONCLUSION: Gene array studies of ulcerative colitis mucosal biopsies identified predictive panels of genes for (non-)response to infliximab. Further study of the pathways involved should allow a better understanding of the mechanisms of resistance to infliximab therapy in ulcerative colitis. ClinicalTrials.gov number, NCT00639821.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Mucosa Intestinal/metabolismo , Adulto , Estudios de Cohortes , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Resistencia a Medicamentos/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Infliximab , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pronóstico , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
4.
Radiat Res ; 185(2): 109-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26829612

RESUMEN

The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on one gene, ferredoxin reductase (FDXR), using qRT-PCR were as precise as dose estimates based on multiple genes using microarrays, but the precision decreased at doses ≥2 Gy. Binary dose categories comprising, for example, unexposed compared with exposed samples, could be completely discriminated with most of our methods. Exposed prostate cancer blood samples (n = 4) could be completely discriminated from unexposed blood samples (n = 4, P < 0.03, two-sided Fisher's exact test) without individual controls. This could be performed by introducing an in vitro-to-in vivo correction factor of FDXR, which varied among the laboratories. After that the in vitro-constructed calibration curves could be used for dose estimation of the in vivo exposed prostate cancer blood samples within an accuracy window of ±0.5 Gy in both contributing qRT-PCR laboratories. In conclusion, early and precise dose estimates can be performed, in particular at doses ≤2 Gy in vitro. Blood samples of prostate cancer patients exposed to 0.09-0.017 Gy could be completely discriminated from pre-exposure blood samples with the doses successfully estimated using adjusted in vitro-constructed calibration curves.


Asunto(s)
Absorción de Radiación/fisiología , Bioensayo/métodos , Proteínas Sanguíneas/análisis , Sangre/metabolismo , Sangre/efectos de la radiación , Neoplasias de la Próstata/sangre , Adulto , Relación Dosis-Respuesta en la Radiación , Unión Europea , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Dosis de Radiación , Monitoreo de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA