Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
2.
J Cell Sci ; 133(19)2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046605

RESUMEN

Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the ß integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate ß3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for ß3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and ß3-integrins, in order to activate the ß3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the ß3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Integrina beta3 , Talina , Adhesión Celular , Análisis por Conglomerados , Integrina beta3/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Talina/genética , Talina/metabolismo
3.
Eur J Neurosci ; 53(10): 3311-3322, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33825223

RESUMEN

Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.


Asunto(s)
Colesterol , Proteínas Tirosina Quinasas Receptoras , Animales , Factor Neurotrófico Derivado del Encéfalo , Membrana Celular , Humanos , Ligandos , Ratones , Dominios Proteicos , Receptor trkB
4.
Nat Mater ; 19(6): 669-678, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907416

RESUMEN

Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and ß1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/ß1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.


Asunto(s)
Integrinas/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sindecano-4/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Células Cultivadas , Humanos , Integrinas/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Sindecano-4/genética , Proteína de Unión al GTP rhoA/genética
5.
Mol Pharm ; 18(7): 2612-2621, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34096310

RESUMEN

Liposome-based drug delivery systems composed of DOPE stabilized with cholesteryl hemisuccinate (CHMS) have been proposed as a drug delivery mechanism with pH-triggered release as the anionic form (CHSa) is protonated (CHS) at reduced pH; PEGylation is known to decrease this pH sensitivity. In this manuscript, we set out to use molecular dynamics (MD) simulations with a model with all-atom resolution to provide insight into why incorporation of poly(ethyleneglycol) (PEG) into DOPE-CHMS liposomes reduces their pH sensitivity; we also address two additional questions: (1) How CHSa stabilizes DOPE bilayers into a lamellar conformation at a physiological pH of 7.4? and (2) how the change from CHSa to CHS at acidic pH triggers the destabilization of DOPE bilayers? We found that (A) CHSa stabilizes the DOPE lipid membrane by increasing the hydrophilicity of the bilayer surface, (B) when CHSa changes to CHS by pH reduction, DOPE bilayers are destabilized due to a reduction in bilayer hydrophilicity and a reduction in the area per lipid, and (C) PEG stabilizes DOPE bilayers into the lamellar phase, thus reducing the pH sensitivity of the liposomes by increasing the area per lipid through penetration into the bilayer, which is our main focus.


Asunto(s)
Ésteres del Colesterol/química , Membrana Dobles de Lípidos/química , Liposomas/química , Simulación de Dinámica Molecular , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Fusión de Membrana
6.
Chem Rev ; 119(9): 5607-5774, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30859819

RESUMEN

Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.


Asunto(s)
Membranas/química , Membranas/fisiología , Modelos Biológicos , Animales , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Simulación por Computador , Humanos , Lipidómica/métodos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membranas/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo
7.
Langmuir ; 36(35): 10438-10447, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804507

RESUMEN

Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7ß-hydroxycholesterol (7ß-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membrane-bobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7ß-OH-chol which represents ring-oxidized sterols.

8.
J Chem Inf Model ; 60(11): 5624-5633, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32915560

RESUMEN

Increasing protein kinase C (PKC) activity is of potential therapeutic value. Its activation involves an interaction between the C1 domain and diacylglycerol (DAG) at intracellular membrane surfaces; DAG mimetics hold promise as new drugs. We previously developed the isophthalate derivative HMI-1a3, an effective but highly lipophilic (clogP = 6.46) DAG mimetic. Although a less lipophilic pyrimidine analog, PYR-1gP (clogP = 3.30), gave positive results in computational docking, it unexpectedly presented greatly diminished binding to PKC in vitro. Through more rigorous computational molecular modeling, we reveal that, unlike HMI-1a3, PYR-1gP forms an intramolecular hydrogen bond, which both obstructs binding and reorients PYR-1gP in the membrane in a fashion that prevents it from correctly accessing the PKC C1 domain. Our results highlight the great value of molecular dynamics simulations as a key component for the drug design process of ligands targeting weakly membrane-associated proteins, where simulation in the relevant membrane environment is crucial for obtaining biologically applicable results.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Quinasa C , Diseño de Fármacos , Ligandos , Fosforilación , Proteína Quinasa C/metabolismo
9.
Langmuir ; 35(17): 5944-5956, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30942590

RESUMEN

Phosphatidic acids (PAs) have many biological functions in biomembranes, e.g., they are involved in the proliferation, differentiation, and transformation of cells. Despite decades of research, the molecular understanding of how PAs affect the properties of biomembranes remains elusive. In this study, we explored the properties of lipid bilayers and monolayers composed of PAs and phosphatidylcholines (PCs) with various acyl chains. For this purpose, the Langmuir monolayer technique and atomistic molecular dynamics (MD) simulations were used to study the miscibility of PA and PC lipids and the molecular organization of mixed bilayers. The monolayer experiments demonstrated that the miscibility of membrane components strongly depends on the structure of the hydrocarbon chains and thus on the overall lipid shape. Interactions between PA and PC molecules vary from repulsive, for systems containing lipids with saturated and unsaturated acyl tails (strongly positive values of the excess free energy of mixing), to attractive, for systems in which all lipid tails are saturated (negative values of the excess free energy of mixing). The MD simulations provided atomistic insight into polar interactions (formation of hydrogen bonds and charge pairs) in PC-PA systems. H-bonding between PA monoanions and PCs in mixed bilayers is infrequent, and the lipid molecules interact mainly via electrostatic interactions. However, the number of charge pairs significantly decreases with the number of unsaturated lipid chains in the PA-PC system. The PA dianions weakly interact with the zwitterionic lipids, but their headgroups are more hydrated as compared to the monoanionic form. The acyl chains in all PC-PA bilayers are more ordered compared to single-component PC systems. In addition, depending on the combination of lipids, we observed a deeper location of the PA phosphate groups compared to the PC phosphate groups, which can alter the presentation of PAs for the peripheral membrane proteins, affecting their accessibility for binding.

10.
J Biol Chem ; 292(35): 14438-14455, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28718450

RESUMEN

Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Biología Computacional , Secuencia Conservada , Transferencia de Energía , Enlace de Hidrógeno , Ligandos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Mutación Missense , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Polimorfismo de Nucleótido Simple , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
J Membr Biol ; 251(3): 521-534, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550877

RESUMEN

In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.


Asunto(s)
Membrana Dobles de Lípidos/química , Colesterol/química , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Estrés Oxidativo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(7): 2040-5, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646428

RESUMEN

Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O-O bond splitting transition of the catalytic cycle (A → P(R)), it has been proposed that the electron transfer to the binuclear iron-copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane-solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state-dependent organization of water molecules within the protein structure that gates the proton transfer pathway.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Protones , Agua/química , Transporte de Electrón , Simulación de Dinámica Molecular
13.
Proc Natl Acad Sci U S A ; 112(14): 4334-9, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25805821

RESUMEN

The epidermal growth factor receptor (EGFR) regulates several critical cellular processes and is an important target for cancer therapy. In lieu of a crystallographic structure of the complete receptor, atomistic molecular dynamics (MD) simulations have recently shown that they can excel in studies of the full-length receptor. Here we present atomistic MD simulations of the monomeric N-glycosylated human EGFR in biomimetic lipid bilayers that are, in parallel, also used for the reconstitution of full-length receptors. This combination enabled us to experimentally validate our simulations, using ligand binding assays and antibodies to monitor the conformational properties of the receptor reconstituted into membranes. We find that N-glycosylation is a critical determinant of EGFR conformation, and specifically the orientation of the EGFR ectodomain relative to the membrane. In the absence of a structure for full-length, posttranslationally modified membrane receptors, our approach offers new means to structurally define and experimentally validate functional properties of cell surface receptors in biomimetic membrane environments.


Asunto(s)
Receptores ErbB/química , Anticuerpos Monoclonales/química , Membrana Celular/metabolismo , Simulación por Computador , Glicosilación , Humanos , Ligandos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteolípidos/química , Programas Informáticos
14.
Proc Natl Acad Sci U S A ; 112(37): 11571-6, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26330610

RESUMEN

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.


Asunto(s)
Complejo I de Transporte de Electrón/fisiología , Oxidación-Reducción , Transporte de Electrón , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Unión Proteica , Estructura Terciaria de Proteína , Bombas de Protones/fisiología , Electricidad Estática , Temperatura , Thermus thermophilus/enzimología , Rayos X
15.
Biochemistry ; 56(9): 1227-1238, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28206745

RESUMEN

DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory ß-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/enzimología , Simulación de Dinámica Molecular , Dominio Catalítico , ADN/metabolismo , ADN Polimerasa gamma , Humanos , Mutación , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Estructura Secundaria de Proteína , Rotación
16.
Biochim Biophys Acta ; 1858(1): 97-103, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26522077

RESUMEN

Given the importance of plasmalogens in cellular membranes and neurodegenerative diseases, a better understanding of how plasmalogens affect the lipid membrane properties is needed. Here we carried out molecular dynamics simulations to study a lipid membrane comprised of ethanolamine plasmalogens (PE-plasmalogens). We compared the results to the PE-diacyl counterpart and palmitoyl-oleyl-phosphatidylcholine (POPC) bilayers. Results show that PE-plasmalogens form more compressed, thicker, and rigid lipid bilayers in comparison with the PE-diacyl and POPC membranes. The results also point out that the vinyl-ether linkage increases the ordering of sn-1 chain substantially and the ordering of the sn-2 chain to a minor extent. Further, the vinyl-ether linkage changes the orientation of the lipid head group, but it does not cause changes in the head group and glycerol backbone tilt angles with respect to the bilayer normal. The vinyl-ether linkage also packs the proximal regions of the sn-1 and sn-2 chains more closely together which also decreases the distance between the rest of the sn-1 and sn-2 chains.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Plasmalógenos/química , Simulación de Dinámica Molecular , Relación Estructura-Actividad
17.
Biochim Biophys Acta ; 1858(10): 2362-2379, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26946243

RESUMEN

Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Simulación de Dinámica Molecular , Tensoactivos/química , Sistemas de Liberación de Medicamentos , Fosfatidilcolinas/química , Esfingomielinas/química , Marcadores de Spin , Relación Estructura-Actividad , Transfección
18.
Biochim Biophys Acta ; 1857(10): 1661-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421232

RESUMEN

Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Transporte de Electrón/fisiología , Quinonas/metabolismo , Rhodobacter capsulatus/metabolismo , Aminoácidos/metabolismo , Sitios de Unión/fisiología , Electrones , Hemo/metabolismo , Cinética , Mutagénesis Sitio-Dirigida/métodos , Oxidación-Reducción , Protones
19.
Biochim Biophys Acta ; 1858(9): 2116-2122, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342376

RESUMEN

Quinone and its analogues (Q) constitute an important class of compounds that perform key electron transfer reactions in oxidative- and photo-phosphorylation. In the inner membrane of mitochondria, ubiquinone molecules undergo continuous redox transitions enabling electron transfer between the respiratory complexes. In such a dynamic system undergoing continuous turnover for ATP synthesis, an uninterrupted supply of substrate molecules is absolutely necessary. In the current work, we have performed atomistic molecular dynamics simulations and free energy calculations to assess the structure, dynamics, and localization of quinone and its analogues in a lipid bilayer, whose composition mimics the one in the inner mitochondrial membrane. The results show that there is a strong tendency of both quinone and quinol molecules to localize in the vicinity of the lipids' acyl groups, right under the lipid head group region. Additionally, we observe a second location in the middle of the bilayer where quinone molecules tend to stabilize. Translocation of quinone through a lipid bilayer is very fast and occurs in 10-100ns time scale, whereas the translocation of quinol is at least an order of magnitude slower. We suggest that this has important mechanistic implications given that the localization of Q ensures maximal occupancy of the Q-binding sites or Q-entry points in electron transport chain complexes, thereby maintaining an optimal turnover rate for ATP synthesis.


Asunto(s)
Materiales Biomiméticos/química , Membrana Dobles de Lípidos/química , Mitocondrias/química , Membranas Mitocondriales/química , Simulación de Dinámica Molecular , Quinonas/química
20.
Biochim Biophys Acta ; 1858(2): 281-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26654782

RESUMEN

It has been a long-standing question how the two leaflets in a lipid bilayer modulate each others' physical properties. In this paper, we discuss how this interaction may take place through interdigitation. We use atomistic molecular dynamics simulations to consider asymmetric lipid membrane models whose compositions are based on the lipidomics data determined for exosomes released by PC-3 prostate cancer cells. The simulations show interdigitation to be exceptionally strong for long-chain sphingomyelin (SM) molecules. In asymmetric membranes the amide-linked chain of SM is observed to extend deep into the opposing membrane leaflet. Interestingly, we find that the conformational order of the amide-linked SM chain increases the deeper it penetrates to the opposing leaflet. Analysis of this finding reveals that the amide-linked SM chain interacts favorably with the lipid chains in the opposite leaflet, and that cholesterol modulates the effect of SM interdigitation by influencing the conformational order of lipid hydrocarbon chains in the opposing (cytosolic) leaflet.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Modelos Biológicos , Neoplasias de la Próstata/metabolismo , Esfingomielinas/metabolismo , Línea Celular Tumoral , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA