Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782125

RESUMEN

The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5 These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Intercambio Genético , Arabidopsis , Proteínas de Arabidopsis/genética , Meiosis , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
2.
Plant J ; 106(4): 965-977, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33619799

RESUMEN

The RTR (RecQ/Top3/Rmi1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3α has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3α mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3α and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3α and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3α mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Reparación del ADN/genética , Meiosis/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Inestabilidad Genómica , Recombinación Homóloga , Solanum lycopersicum/enzimología , Solanum lycopersicum/fisiología , Mutación , Fenotipo , Proteínas de Plantas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
3.
PLoS Genet ; 15(5): e1008174, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31120885

RESUMEN

Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Replicación del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Anemia de Fanconi/genética , Inestabilidad Genómica , Meristema/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN Helicasas/genética
4.
PLoS Genet ; 14(9): e1007674, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30222730

RESUMEN

Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Reparación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , Endonucleasas/metabolismo , Dedos de Zinc/genética , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Dominio Catalítico/genética , ADN-Topoisomerasas de Tipo I/genética , ADN Cruciforme/genética , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Mutagénesis , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
5.
PLoS Genet ; 12(10): e1006394, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27760121

RESUMEN

The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Reparación del ADN/genética , Recombinación Homóloga/genética , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/genética , ADN-Topoisomerasas de Tipo I/genética , ADN Ribosómico/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Polen/genética , ARN Ribosómico/genética
6.
New Phytol ; 218(4): 1478-1490, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577315

RESUMEN

RecQ helicases are important caretakers of genome stability and occur in varying copy numbers in different eukaryotes. Subsets of RecQ paralogs are involved in DNA crosslink (CL) repair. The orthologs of AtRECQ2, AtRECQ3 and AtHRQ1, HsWRN, DmRECQ5 and ScHRQ1 participate in CL repair in their respective organisms, and we aimed to define the function of these helicases for plants. We obtained Arabidopsis mutants of the three RecQ helicases and determined their sensitivity against CL agents in single- and double-mutant analyses. Only Athrq1, but not Atrecq2 and Atrecq3, mutants proved to be sensitive to intra- and interstrand crosslinking agents. AtHRQ1 is specifically involved in the repair of replicative damage induced by CL agents. It shares pathways with the Fanconi anemia-related endonuclease FAN1 but not with the endonuclease MUS81. Most surprisingly, AtHRQ1 is epistatic to the ATPase RAD5A for intra- as well as interstrand CL repair. We conclude that, as in fungi, AtHRQ1 has a conserved function in DNA excision repair. Additionally, HRQ1 not only shares pathways with the Fanconi anemia repair factors, but in contrast to fungi also seems to act in a common pathway with postreplicative DNA repair.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Reactivos de Enlaces Cruzados/química , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Anemia de Fanconi/enzimología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Muerte Celular/efectos de los fármacos , Cisplatino/farmacología , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Epistasis Genética/efectos de los fármacos , Genoma de Planta , Meristema/efectos de los fármacos , Meristema/fisiología , Mitomicina/farmacología , Enzimas Multifuncionales , Mutación/genética , RecQ Helicasas/metabolismo
7.
Nat Commun ; 13(1): 1502, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314679

RESUMEN

CRISPR/Cas has been mainly used for mutagenesis through the induction of double strand breaks (DSBs) within unique protein-coding genes. Using the SaCas9 nuclease to induce multiple DSBs in functional repetitive DNA of Arabidopsis thaliana, we can now show that cell death can be induced in a controlled way. This approach, named CRISPR-Kill, can be used as tool for tissue engineering. By simply exchanging the constitutive promoter of SaCas9 with cell type-specific promoters, it is possible to block organogenesis in Arabidopsis. By AP1-specific expression of CRISPR-Kill, we are able to restore the apetala1 phenotype and to specifically eliminate petals. In addition, by expressing CRISPR-Kill in root-specific pericycle cells, we are able to dramatically reduce the number and the length of lateral roots. In the future, the application of CRISPR-Kill may not only help to control development but could also be used to change the biochemical properties of plants.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Arabidopsis/genética , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleasas/metabolismo , Mutagénesis , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA