Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomolecules ; 13(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627263

RESUMEN

Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.


Asunto(s)
Esclerosis Amiotrófica Lateral , Mitofagia , Humanos , Mitocondrias , Membranas Mitocondriales , Apoptosis , Proteínas Mitocondriales , Receptores de Estrógenos
2.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993756

RESUMEN

Mitochondria are the primary suppliers of ATP (adenosine triphosphate) in neurons. Mitochondrial dysfunction is a common phenotype in many neurodegenerative diseases. Given some axons' elaborate architecture and extreme length, it is not surprising that mitochondria in axons can experience different environments compared to their cell body counterparts. Interestingly, dysfunction of axonal mitochondria often precedes effects on the cell body. To model axonal mitochondrial dysfunction in vitro, microfluidic devices allow treatment of axonal mitochondria without affecting the somal mitochondria. The fluidic pressure gradient in these chambers prevents diffusion of molecules against the gradient, thus allowing for analysis of mitochondrial properties in response to local pharmacological challenges within axons. The current protocol describes the seeding of dissociated hippocampal neurons in microfluidic devices, staining with a membrane-potential sensitive dye, treatment with a mitochondrial toxin, and the subsequent microscopic analysis. This versatile method to study axonal biology can be applied to many pharmacological perturbations and imaging readouts, and is suitable for several neuronal subtypes.


Asunto(s)
Axones , Microfluídica , Adenosina Trifosfato/metabolismo , Transporte Axonal/fisiología , Axones/fisiología , Mitocondrias/metabolismo , Neuronas/fisiología
3.
Neurosci Res ; 176: 73-78, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34624412

RESUMEN

CDKL5 Deficiency Disorder (CDD) is a severe encephalopathy characterized by intractable epilepsy, infantile spasms, and cognitive disabilities. The detrimental CNS manifestations and lack of therapeutic interventions represent unmet needs, necessitating identification of CDD-dependent phenotypes for in vitro disease modeling and therapeutic testing. Here, we optimized a high-content assay to quantify cilia in CDKL5-deficient neurons. Our work shows that Cdkl5-knockdown neurons have elongated cilia and uncovers cilium lengthening in hippocampi of Cdkl5 knockout mice. Collectively, our findings identify cilia length alterations under CDKL5 activity loss in vitro and in vivo and reveal elongated cilia as a robust functional phenotype for CDD.


Asunto(s)
Síndromes Epilépticos , Proteínas Serina-Treonina Quinasas , Animales , Cilios , Síndromes Epilépticos/genética , Ratones , Neuronas , Fenotipo , Proteínas Serina-Treonina Quinasas/genética
4.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35777956

RESUMEN

Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B's role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD-linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral , Proteínas Relacionadas con la Autofagia , Demencia Frontotemporal , Proteínas Asociadas a Microtúbulos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteómica , ARN/genética , ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Cell Rep ; 31(12): 107780, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579942

RESUMEN

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction.


Asunto(s)
Cilios/metabolismo , Respuesta al Choque Térmico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Envejecimiento/metabolismo , Animales , Benzoquinonas/farmacología , Encéfalo/patología , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Lactamas Macrocíclicas/farmacología , Ratones Noqueados , Neuronas/efectos de los fármacos , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Sirolimus/farmacología , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA