Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Iran J Basic Med Sci ; 27(6): 768-774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645503

RESUMEN

Objectives: Rhabdomyolysis (RM) is a serious fatal syndrome. The RM leads to acute kidney injury (AKI) as a fatal complication. The belief is that RM-induced AKI is triggered by myoglobin (MB). MB activates oxidative and apoptotic pathways. Trans-sodium crocetinate (TSC) is obtained from saffron. It has anti-oxidant and renoprotective effects. This research was designed to assess the mechanisms of MB-induced cytotoxicity in HEK-293 cells (human embryonic kidney cells) as well as the possible effects of TSC against MB-induced cytotoxicity. Materials and Methods: HEK-293 cells were exposed to diverse concentrations of TSC (2.5, 5, 10, 20, 40, 80, and 100 µM) for 24 hr. Then, MB (9 mg/ml) was added to the cells. After 24 hr, cell viability was measured through MTT, and the values of ROS generation were calculated using DCFH-DA assay. Also, autophagy and apoptosis markers in cells were assessed by western blot analysis. Results: MB decreased viability and increased ROS levels in HEK-293 cells. However, pretreatment of HEK-293 cells with TSC for 24 hr reduced the cytotoxicity and ROS production caused by MB. Furthermore, MB enhanced both the apoptosis (cleaved caspase-3 and Bax/Bcl-2 ratio) and autophagy markers (LC3II/I ratio and Beclin-1) in HEK-293 cells. On the other hand, TSC pretreatment condensed the levels of autophagy and apoptosis criteria in response to MB cytotoxicity. Conclusion: TSC has a positive effect in preventing MB-induced cytotoxicity in HEK-293 cells by increasing anti-oxidant activity and regulation of apoptotic and autophagy signaling pathways.

2.
Iran J Basic Med Sci ; 27(4): 383-390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419887

RESUMEN

Propolis is produced by bees using a mixture of bees wax and saliva. It contains several bioactive compounds that mainly induce anti-oxidant and anti-inflammatory effects. In this review, we aimed to investigate the effects of propolis on kidney diseases. We used "Kidney", "Disease", "Propolis", "Renal", "Constituent", "Mechanism", "Infection", and other related keywords as the main keywords to search for works published before July 2023 in Google scholar, Scopus, and Pubmed databases. The search terms were selected according to Medical Subject Headings (MeSH). This review showed that propolis affects renal disorders with inflammatory and oxidative etiology due to its bioactive compounds, mainly flavonoids and polyphenols. There have been few studies on the effects of propolis on kidney diseases; nevertheless, the available studies are integrated in this review. Overall, propolis appears to be effective against several renal diseases through influencing mechanisms such as apoptosis, oxidative balance, and inflammation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38995374

RESUMEN

Colistin, a multidrug-resistant gram-negative bacterial infection medication, has been associated with renal impairment and failure. Trans-sodium crocetinate (TSC), a saffron-derived chemical recognized for its antioxidant and nephroprotective properties, was studied in this study to determine its potential to alleviate the nephrotoxic effects of colistin. Forty-two male Wistar rats were randomly classified into seven groups (n = 6): (1) control (normal saline, 12 days, i.p.), (2) colistin (22 mg/kg, 7 days, i.p.), (3-5) colistin + TSC (25, 50, and 100 mg/kg, 12 days, i.p., starting from 5 days before colistin), (6) TSC (100 mg/kg, 12 days, i.p.), (7) colistin + vitamin E (100 IU/kg, 12 days, i.p). On day 13, the rats were euthanized and the serum content of creatinine, BUN, Na+, and K+, as well as oxidative stress (GSH, MDA, SOD, CAT), inflammatory (IL-1ß), apoptotic (Bax, Bcl-2, caspase-3, 8, 9), and autophagy (Beclin-1, LC3) markers, NGAL, and histopathological changes in the kidney were measured. Colistin significantly increased serum creatinine, BUN, MDA, IL-1ß, caspase-3,8,9, Bax, Beclin-1, LC3, and NGAL levels in kidney tissue. It also caused inflammation, focal necrosis of tubular epithelial cells, protein cast, and acute tubular necrosis. Furthermore, colistin decreased SOD, CAT, GSH, and Bcl-2 levels. TSC and vitamin E administration along with colistin restored most of the alterations induced by colistin. Overall, it could be concluded that colistin induces oxidative stress, inflammation, autophagy, and apoptosis, which can cause kidney injury. However, TSC can also be used as a therapeutic agent to reduce injuries caused by colistin.

4.
Iran J Basic Med Sci ; 27(8): 1033-1039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911241

RESUMEN

Objectives: Rhabdomyolysis, a potentially life-threatening condition, occurs when myoglobin is released from damaged muscle cells, leading to acute kidney injury (AKI). Alpha lipoic acid (ALA), an organosulfur compound known for its anti-oxidant and anti-inflammatory properties, was examined in this study for its potential impact on rhabdomyolysis-induced AKI in rats. Materials and Methods: Six groups of rats were included in the study, with each group consisting of six rats (n=6): Control, rhabdomyolysis, rhabdomyolysis treated with different doses of ALA (5, 10, and 20 mg/kg), and ALA alone (20 mg/kg) groups. Rhabdomyolysis was induced by intramuscular injection of glycerol on the first day of the experiment, while ALA was administered intraperitoneally for four consecutive days. Renal function parameters, oxidative stress markers, and histological changes in the kidneys were evaluated. Western blot analysis was performed to measure the levels of neutrophil gelatinase-associated lipocalin (NGAL) and tumor necrosis factor-alpha (TNF-α) proteins. Results: A significant increase in serum urea, creatinine, renal malondialdehyde, NGAl, and TNF-α protein levels was observed in glycerol-injected rats. In addition, a significant decrease in glutathione was recorded. Compared to the rhabdomyolysis group, treatment with ALA recovered kidney histological and biochemical abnormalities. Conclusion: Results suggest that rhabdomyolysis-induced AKI is associated with increased oxidative stress and inflammation. Treatment with ALA improved kidney histological abnormalities and reduced oxidative stress markers in rats. Therefore, ALA may have a potential protective effect against rhabdomyolysis-induced AKI.

5.
Iran J Basic Med Sci ; 27(5): 552-559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629092

RESUMEN

Objectives: Rhabdomyolysis leads to the release of myoglobin, sarcoplasmic proteins, and electrolytes into the blood circulation causing acute kidney injury (AKI). Thymoquinone, a natural compound found in Nigella sativa seeds, has antioxidant and anti-inflammatory effects. This investigation assessed the renoprotective effect of thymoquinone on rhabdomyolysis-induced AKI in rats. Materials and Methods: Male Wistar rats were categorized into six groups (n = 6): 1. Control: (normal saline), 2. Glycerol (50 ml/kg, single dose, IM), 3-5: Glycerol + thymoquinone (1, 2.5 and 5 mg/kg, 4 days, IP), 6. Thymoquinone (5 mg/kg). On day 5, serum and kidney tissue were isolated and the amounts of serum creatinine and blood urea nitrogen (BUN), renal malondialdehyde (MDA), glutathione (GSH.), tumor necrosis factor-alpha (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL), and pathological changes were evaluated. Results: Glycerol increased creatinine, BUN, MDA, TNF-α, and NGAL levels. It decreased GSH amounts and caused renal tubular necrosis, glomerular atrophy, and myoglobin cast in kidney tissue. Co-administration of glycerol and thymoquinone reduced creatinine, BUN, histopathological alterations, and MDA levels, and enhanced GSH amounts. Administration of glycerol and thymoquinone (5 mg/kg) had no significant effect on TNF-α amount but decreased NGAL protein levels. The administration of thymoquinone (5 mg/kg) alone did not display a significant difference from the control group. Conclusion: Rhabdomyolysis from glycerol injection in rats can cause kidney damage. Thymoquinone may attenuate renal dysfunction and oxidative stress. However, the TNF-α level was not significantly affected. Further studies are needed to explore the potential therapeutic effects of thymoquinone in managing AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA