Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Haematol ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735683

RESUMEN

Recent reports have raised concerns about the association of chimeric antigen receptor T cell (CAR-T) with non-negligible cardiotoxicity, particularly atrial arrhythmias. First, we conducted a pharmacovigilance study to assess the reporting of atrial arrhythmias following CD19-directed CAR-T. Subsequently, to determine the incidence, risk factors and outcomes of atrial arrhythmias post-CAR-T, we compiled a retrospective single-centre cohort of non-Hodgkin lymphoma patients. Only commercial CAR-T products were considered. Atrial arrhythmias were nearly fourfold more likely to be reported after CAR-T therapy compared to all other cancer patients in the FAERS (adjusted ROR = 3.76 [95% CI 2.67-5.29]). Of the 236 patients in our institutional cohort, 23 (10%) developed atrial arrhythmias post-CAR-T, including 12 de novo arrhythmias, with most (83%) requiring medical intervention. Atrial arrhythmias frequently co-occurred with cytokine release syndrome and were associated with higher post-CAR-T infusion peak levels of IL-10, TNF-alpha and LDH, and lower trough levels of fibrinogen. In a multivariable analysis, risk factors for atrial arrhythmia were history of atrial arrhythmia (OR = 6.80 [2.39-19.6]) and using CAR-T product with a CD28-costimulatory domain (OR = 5.17 [1.72-18.6]). Atrial arrhythmias following CD19-CAR-T therapy are prevalent and associated with elevated inflammatory biomarkers, a history of atrial arrhythmia and the use of a CAR-T product with a CD28 costimulatory domain.

2.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37205350

RESUMEN

Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL (https://vdblab.github.io/FLORAL/), an open-source computational tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility of longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches, and better sensitivity over popular differential abundance testing methods for datasets with smaller sample size. In a survival analysis in allogeneic hematopoietic-cell transplant, we further demonstrated considerable improvement by FLORAL in microbial feature selection by utilizing longitudinal microbiome data over only using baseline microbiome data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA