Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563276

RESUMEN

Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Dendríticas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Humanos , Tolerancia Inmunológica , Inmunoterapia , Linfocitos T Reguladores
2.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899608

RESUMEN

Tolerogenic dendritic cells (toDCs) are crucial to controlling the development of autoreactive T cell responses and the prevention of autoimmunity. We have reported that NOD.CD11cStat5b-CA transgenic mice expressing a constitutively active (CA) form of Stat5b under the control of a CD11c promoter are protected from diabetes and that Stat5b-CA-expressing DCs are tolerogenic and halt ongoing diabetes in NOD mice. However, the molecular mechanisms by which Stat5b-CA modulates DC tolerogenic function are not fully understood. Here, we used bone marrow-derived DCs (BMDCs) from NOD.CD11cStat5b-CA transgenic mice (Stat5b-CA.BMDCs) and found that Stat5b-CA.BMDCs displayed high levels of MHC class II, CD80, CD86, PD-L1, and PD-L2 and produced elevated amounts of TGFß but low amounts of TNFα and IL-23. Stat5b-CA.BMDCs upregulated Irf4 and downregulated Irf8 genes and protein expression and promoted CD11c+CD11b+ DC2 subset differentiation. Interestingly, we found that the histone methyltransferase Ezh2 and Stat5b-CA bound gamma-interferon activated site (GAS) sequences in the Irf8 enhancer IRF8 transcription, whereas Stat5b but not Ezh2 bound GAS sequences in the Irf4 promoter to enhance IRF4 transcription. Injection of Stat5b-CA.BMDCs into prediabetic NOD mice halted progression of islet inflammation and protected against diabetes. Importantly, inhibition of Ezh2 in tolerogenic Stat5b-CA.BMDCs reduced their ability to prevent diabetes development in NOD recipient mice. Taken together, our data suggest that the active form of Stat5b induces tolerogenic DC function by modulating IRF4 and IRF8 expression through recruitment of Ezh2 and highlight the fundamental role of Ezh2 in Stat5b-mediated induction of tolerogenic DC function.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factores Reguladores del Interferón/metabolismo , Factor de Transcripción STAT5/metabolismo , Traslado Adoptivo , Animales , Autoinmunidad/inmunología , Médula Ósea/efectos de los fármacos , Antígeno CD11c/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Factor de Transcripción STAT5/fisiología , Linfocitos T Reguladores/inmunología
3.
Transl Res ; 255: 37-49, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36400308

RESUMEN

Dendritic cells (DCs) are key regulators of the adaptive immune response. Tolerogenic dendritic cells play a crucial role in inducing and maintaining immune tolerance in autoimmune diseases such as type 1 diabetes in humans as well as in the NOD mouse model. We previously reported that bone marrow-derived DCs (BM.DCs) from NOD mice, generated with a low dose of GM-CSF (GM/DCs), induce Treg differentiation and are able to protect NOD mice from diabetes. We had also found that the p38 MAPK/C/EBPß axis is involved in regulating the phenotype, as well as the production of IL-10 and IL-12p70, by tolerogenic GM/DCs. Here, we report that the inhibition of the PI3K signaling switched the cytokine profile of GM/DCs toward Th17-promoting cytokines without affecting their phenotype. PI3K inhibition abrogated the production of IL-10 by GM/DCs, whereas it enhanced their production of IL-23 and TGFß. Inhibition of PI3K signaling in tolerogenic GM/DCs also induced naive CD4+ T cells differentiation toward Th17 cells. Mechanistically, PI3K inhibition increased the DNA-binding activity of C/EBPß through a GSK3-dependent pathway, which is important to maintain the semimature phenotype of tolerogenic GM/DCs. Furthermore, analysis of C/EBPß-/- GM/DCs demonstrated that C/EBPß is required for IL-23 production. Of physiological relevance, the level of protection from diabetes following transfusion of GM/DCs into young NOD mice was significantly reduced when NOD mice were transfused with GM/DCs pretreated with a PI3K inhibitor. Our data suggest that PI3K/C/EBPß signaling is important in controlling tolerogenic function of GM/DCs by limiting their Th17-promoting cytokines.


Asunto(s)
Diabetes Mellitus , Interleucina-10 , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo , Células Th17/metabolismo , Médula Ósea , Glucógeno Sintasa Quinasa 3/metabolismo , Linfocitos T Reguladores , Diferenciación Celular , Citocinas/metabolismo , Tolerancia Inmunológica , Células Dendríticas/metabolismo , Interleucina-23/metabolismo , Diabetes Mellitus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA