Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Amino Acids ; 54(11): 1477-1489, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864259

RESUMEN

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.


Asunto(s)
Lipopéptidos , Paenibacillus , Lipopéptidos/farmacología , Lipopéptidos/química , Staphylococcus aureus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo
2.
Proteomics ; 16(3): 477-90, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26631988

RESUMEN

Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, ß-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies.


Asunto(s)
Pared Celular/química , Proteínas Fúngicas/metabolismo , Fusarium/química , Glucosa/farmacología , Trichoderma/metabolismo , Antibiosis , Agentes de Control Biológico , Pared Celular/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Mezclas Complejas/metabolismo , Mezclas Complejas/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Electroforesis en Gel Bidimensional , Proteínas Fúngicas/genética , Fusarium/patogenicidad , Expresión Génica , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,4-alfa-Glucosidasa/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucosa/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Anotación de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Trichoderma/efectos de los fármacos , Trichoderma/genética , Trichoderma/crecimiento & desarrollo
3.
BMC Genomics ; 15: 204, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24635846

RESUMEN

BACKGROUND: The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum. RESULTS: Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction. CONCLUSIONS: The present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against S.sclerotiorum. The RNA-seq data presented will facilitate improvement of the annotation of gene models in the draft T. harzianum genome and provide important information regarding the transcriptome during this interaction.


Asunto(s)
Ascomicetos/genética , Genes Fúngicos , Transcriptoma , Trichoderma/genética , Mapeo Cromosómico , Análisis por Conglomerados , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Trichoderma/crecimiento & desarrollo
4.
Biotechnol Lett ; 36(10): 2095-101, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24966041

RESUMEN

Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Trichoderma/enzimología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Microscopía Electrónica de Rastreo , Trichoderma/genética
5.
Biotechnol Lett ; 36(4): 783-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24322765

RESUMEN

A small protein, cysteine-rich, designated SM1, produced by Trichoderma virens and Trichoderma atroviride, acts as elicitor for triggering plant defense reactions. We analyzed Sm1 gene expression of eight different strains of Trichoderma spp. grown on glucose, seeds or roots of beans. Regardless of the carbon source, T37 strain had significantly higher Sm1 expression and was chosen for further studies. When grown on different carbon sources, Sm1 expression was highest on galactose, bean seed, glucose and starch. Sm1 gene from T37 strain was cloned; it had a single exon, and encoded a protein of 138 amino acids, showing high sequence identity with some proteins belonging to the cerato-platanin family.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Expresión Génica , Trichoderma/genética , Trichoderma/metabolismo , Clonación Molecular , ADN de Hongos/química , ADN de Hongos/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
6.
Fungal Biol Biotechnol ; 11(1): 5, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715132

RESUMEN

BACKGROUND: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and ß-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

7.
Antibiotics (Basel) ; 12(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37760697

RESUMEN

Antimicrobial peptides (AMPs) are considered a promising therapeutic approach against multi-drug resistant microorganisms. Besides their advantages, there are limitations to be overcome so that these molecules can become market competitive. One of the biggest limitations is proteolytic susceptibility, which could be overcome by structural modifications such as cyclization, especially for helix-constraining strategies. Over the years, many helix stabilization techniques have arisen, such as lactam-bridging, triazole-based, N-alkylation and all-hydrocarbon stapling. All-hydrocarbon stapling takes advantage of modified amino acid residues and olefinic cross-linking to constrain peptide helices. Despite being a well-established strategy and presenting efficient stability results, there are different limitations especially related to toxicity. In this review, recent studies on stapled AMPs for antimicrobial usage are explored with the aim of understanding the future of these molecules as putative antimicrobial agents.

8.
Braz J Microbiol ; 54(1): 239-258, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36701110

RESUMEN

A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).


Asunto(s)
Fosfolípidos , Suelo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Ubiquinona/química , Ubiquinona/genética , Filogenia , Técnicas de Tipificación Bacteriana , Microbiología del Suelo , Ácidos Grasos/química , Genómica
9.
Front Microbiol ; 13: 850007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060778

RESUMEN

Antimicrobial peptides (AMPs) are components in the innate immune system of various organisms, and many AMPs can be found in poisons from animals such as spiders, scorpions, and snakes. The peptide Cupiennin-1a is present in the venom of the spider Cupiennius salei and belongs to a group of peptides called cupiennins. The peptide demonstrated high cytotoxic activity against mammalian cells; thus, aiming to solve this problem, seven analogs were designed (R1a, R1b, R2b, R3b, R6b, R8b, and R10b) based on the primary structure of the peptide Cupiennin 1a, reducing its size and substituting some amino acid residues. The antimicrobial results showed that all Cupiennin 1a analogs displayed antimicrobial activity against the tested bacterial and fungal strains. Cytotoxicity tests demonstrated a decrease in the cytotoxic effect of the analogs when compared to the peptide Cupiennin-1a. The antitumor activity against breast adenocarcinoma lines was observed for all the peptides, displaying a better effect against the MCF-7 and MDAMB-231 cell lines. The eight peptides have insecticidal potential, and the original peptide and analogs R6b, R8b, and R10b showed better efficiency even at low concentrations. The rational design of the analogs led to new molecules displaying activities against different cell types and reduced cytotoxicity toward healthy mammalian cells when compared to the original peptide, demonstrating that this was an interesting approach for the development of molecules with biotechnological potential.

10.
Braz J Microbiol ; 52(4): 1825-1833, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34435341

RESUMEN

Paenibacillus elgii AC13 produces antimicrobial lipopeptides of agricultural and pharmaceutical importance. It secretes four cyclic lipopeptides named pelgipeptins, previously characterized in P. elgii B69. These lipopeptides result from the expression of a nonribosomal peptide gene cluster. P. elgii AC13 also produced two linear lipopeptides with ratios of [M + H] + 1105 and 1119 m/z. These compounds were previously observed in Paenibacillus sp. strain OSY-N, but due to purification difficulties, their characterization was executed using synthetically produced linear pelgipeptins. In the present study, purification was achieved from the supernatants of cultures from three complex media by high-performance liquid chromatography. The partial characterization of linear pelgipeptins revealed the similar antimicrobial activity and cytotoxicity of their synthetically produced counterparts, known as paenipeptins. Cyclic forms were highly stable to changes in pH, temperature, and organic extraction with n-butanol as shown by mass spectrometry (MALDI-TOF); therefore, these steps did not cause the hydrolysis of pelgipeptins. A low-activity thioesterase could also generate the linear isoforms observed; this enzyme catalyzes the cyclization process and is coded in the same gene cluster. Alternatively, the cyclic forms were hydrolyzed by an unknown protease produced during growth in the complex medium used in the present study. Although culture conditions are known to produce pelgipeptins with different yields and amino acid compositions, the occurrence of linear and cyclic forms simultaneously has not yet been reported. A mixture of cyclic and linear pelgipeptins presents a potential advantage of the higher antimicrobial activity of cyclic forms combined with the lower cytotoxicity of linear isoforms.


Asunto(s)
Lipopéptidos , Paenibacillus , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Lipopéptidos/química , Lipopéptidos/genética , Lipopéptidos/aislamiento & purificación , Lipopéptidos/farmacología , Paenibacillus/química , Paenibacillus/genética
11.
Biotechnol Adv ; 41: 107533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32151692

RESUMEN

Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.


Asunto(s)
Briófitas , Bryopsida , Reactores Biológicos , Biotecnología
12.
Sci Rep ; 10(1): 11680, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669617

RESUMEN

Bioactive plant peptides have received considerable interest as potential antihypertensive agents with potentially fewer side effects than antihypertensive drugs. Here, the blood pressure-lowering effects of the Bowman-Birk protease inhibitor, BTCI, and its derived peptides, PepChy and PepTry, were investigated using normotensive (Wistar-WR) and spontaneously hypertensive rats (SHR). BTCI inhibited the proteases trypsin and chymotrypsin, respectively, at 6 µM and 40 µM, a 10-fold greater inhibition than observed with PepTry (60 µM) and PepChy (400 µM). These molecules also inhibited angiotensin converting enzyme (ACE) with IC50 values of 54.6 ± 2.9; 24.7 ± 1.1; and 24.4 ± 1.1 µM, respectively, occluding its catalytic site, as indicated by molecular docking simulation, mainly for PepChy and PepTry. Gavage administration of BTCI and the peptides promoted a decrease of systolic and diastolic blood pressure and an increase of renal and aortic vascular conductance. These effects were more expressive in SHR than in WR. Additionally, BTCI, PepChy and PepTry promoted coronary vasodilation and negative inotropic effects in isolated perfused hearts. The nitric oxide synthase inhibitor blunted the BTCI and PepChy, with no cardiac effects on PepTry. The findings of this study indicate a therapeutic potential of BTCI and its related peptides in the treatment of hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Contracción Miocárdica/efectos de los fármacos , Péptidos/farmacología , Inhibidor de la Tripsina de Soja de Bowman-Birk/farmacología , Animales , Antihipertensivos/química , Sitios de Unión , Quimotripsina/química , Quimotripsina/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hipertensión/enzimología , Hipertensión/fisiopatología , Masculino , Simulación del Acoplamiento Molecular , NG-Nitroarginina Metil Éster/química , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Péptidos/síntesis química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Tripsina/química , Tripsina/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk/química , Vasodilatación/efectos de los fármacos
13.
J Microbiol Methods ; 81(1): 6-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20096308

RESUMEN

Beta-1,3-glucanase is an important cell wall-degrading enzyme involved in mycoparasitism by Trichoderma spp. during antagonism against phytopathogenic fungi. A simple microplate-based method to assay beta-1,3-glucanase activity is described here as an alternative to an expensive tube-assay method. The reaction volume of the micro-assay was reduced to 130 microl from the 1150 microl used in the standard beta-1,3-glucanase macro-assay. Statistical analyses showed significant difference in sensitivity between the micro- and the macro-assay. The micro-method was optimized using the Response Surface Quadratic Model. The sensitivity of the optimized micro-method was shown to be four-fold greater than the macro-assay and two-fold higher than the micro-assay. The optimized micro-assay was significantly more sensitive in all of the twenty examined isolates during Trichoderma spp. beta-1,3-glucanase screening. We conclude that this modified and optimized method is more convenient, faster, cheaper and more reproducible than the traditional tube-assay.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Glucano 1,3-beta-Glucosidasa/metabolismo , Tamizaje Masivo/métodos , Micología/métodos , Trichoderma/enzimología , Trichoderma/aislamiento & purificación , Animales , Sensibilidad y Especificidad
14.
Carbohydr Res ; 344(13): 1682-6, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19570529

RESUMEN

The yeast Cryptococcus flavus secretes a glycosylated alpha-amylase (Amy1) when grown in a starch-containing medium. The effects of N-glycosylation on secretion, enzyme activity, and stability of this glycoprotein were studied. Addition of tunicamycin (TM) to the medium at a concentration higher than 0.5 microg mL(-1) affected C. flavus growth. Amy1 activity increased by 55% in the intracellular fraction after C. flavus growth in the presence of 0.5 microg mL(-1) TM. SDS-PAGE and gel activity detection showed that native enzyme and deglycosylated enzyme had apparent molecular mass of 68 and 64.5 kDa, respectively. The N-glycosylation process did not affect either optimum pH or optimum temperature. The K(M) values of native and non-glycosylated alpha-amylases were 0.052 and 0.098 mg mL(-1), and V(max) values were 0.038 and 0.047 mg min(-1), respectively. However, the non-glycosylated form was more sensitive to inactivation by both the proteolytic enzyme trypsin and high temperature. Furthermore, the activity of the non-glycosylated enzyme was affected by Hg(2+) and Cu(2+) suggesting that N-glycosylation is involved in the folding of Amy1.


Asunto(s)
Cryptococcus/enzimología , Nitrógeno/metabolismo , alfa-Amilasas/metabolismo , Proliferación Celular/efectos de los fármacos , Cryptococcus/citología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Glicosilación/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Tunicamicina/farmacología , alfa-Amilasas/química , alfa-Amilasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA