RESUMEN
BACKGROUND: Diagnosing cystic fibrosis (CF) is not always straightforward, in particular when sweat chloride concentration (SCC) is intermediate and <2 CF-causing CFTR variants are identified. The physiological CFTR assays proposed in the guidelines, nasal potential difference and intestinal current measurement, are not readily available nor feasible at all ages. Rectal organoid morphology analysis (ROMA) was previously shown to discriminate between organoids from subjects with and without CF based on a distinct phenotypical difference: compared with non-CF organoids, CF organoids have an irregular shape and lack a visible lumen. The current study serves to further explore the role of ROMA when a CF diagnosis is inconclusive. METHODS: Organoid morphology was analysed using the previously established ROMA protocol. Two indices were calculated: the circularity index to quantify the roundness of organoids and the intensity ratio as a measure of the presence of a central lumen. RESULTS: Rectal organoids from 116 subjects were cultured and analysed together with the 189 subjects from the previous study. ROMA almost completely discriminated between CF and non-CF. ROMA indices correlated with SCC, pancreatic status and genetics, demonstrating convergent validity. For cases with an inconclusive diagnosis according to current guidelines, ROMA provided additional diagnostic information, with a diagnostic ROMA classification for 18 of 24 (75%). DISCUSSION: ROMA provides additional information to support a CF diagnosis when SCC and genetics are insufficient for diagnostic classification. ROMA is standardised and can be centralised, allowing future inclusion in the diagnostic work-up as first-choice physiological assay in case of an unclear diagnosis.
Asunto(s)
Fibrosis Quística , Organoides , Recto , Humanos , Fibrosis Quística/patología , Fibrosis Quística/diagnóstico , Organoides/patología , Recto/patología , Masculino , Femenino , Niño , Adolescente , Adulto , Adulto Joven , Preescolar , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Sudor/químicaRESUMEN
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB). To select the strategy, we developed a minigene cellular model reproducing the 2789+5G>A splicing defect. We obtained up to 70% editing in the minigene model by adapting the ABE to the PAM sequence optimal for targeting 2789+5G>A with a SpCas9-NG (NG-ABE). Nonetheless, the on-target base correction was accompanied by secondary (bystander) A-to-G conversions in nearby nucleotides, which affected the wild-type CFTR splicing. To decrease the bystander edits, we used a specific ABE (NG-ABEmax), which was delivered as mRNA. The NG-ABEmax RNA approach was validated in patient-derived rectal organoids and bronchial epithelial cells showing sufficient gene correction to recover the CFTR function. Finally, in-depth sequencing revealed high editing precision genome-wide and allele-specific correction. Here we report the development of a base editing strategy to precisely repair the 2789+5G>A mutation resulting in restoration of the CFTR function, while reducing bystander and off-target activities.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ARN/metabolismo , Adenina , Fibrosis Quística/genética , Fibrosis Quística/terapia , Fibrosis Quística/metabolismo , Empalme del ARN , Mutación , Edición Génica/métodosRESUMEN
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures.
Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/diagnóstico , Biomarcadores/metabolismo , Fibrosis Quística/metabolismo , Diagnóstico Precoz , Humanos , Técnicas In Vitro , Terapia Molecular DirigidaRESUMEN
Diagnosing cystic fibrosis (CF) when sweat chloride is not in the CF range and less than 2 disease-causing CFTR mutations are found requires physiological CFTR assays, which are not always feasible or available. We developed a new physiological CFTR assay based on the morphological differences between rectal organoids from subjects with and without CF. In organoids from 167 subjects with and 22 without CF, two parameters derived from a semi-automated image analysis protocol (rectal organoid morphology analysis, ROMA) fully discriminated CF subjects with two disease-causing mutations from non-CF subjects (p<0.001). ROMA, feasible at all ages, can be centralised to improve standardisation.
Asunto(s)
Fibrosis Quística , Organoides , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , MutaciónRESUMEN
RATIONALE: Given the vast number of cystic fibrosis transmembrane conductance regulator (CFTR) mutations, biomarkers predicting benefit from CFTR modulator therapies are needed for subjects with cystic fibrosis (CF). OBJECTIVES: To study CFTR function in organoids of subjects with common and rare CFTR mutations and evaluate correlations between CFTR function and clinical data. METHODS: Intestinal organoids were grown from rectal biopsies in a cohort of 97 subjects with CF. Residual CFTR function was measured by quantifying organoid swelling induced by forskolin and response to modulators by quantifying organoid swelling induced by CFTR correctors, potentiator and their combination. Organoid data were correlated with clinical data from the literature. RESULTS: Across 28 genotypes, residual CFTR function correlated (r2=0.87) with sweat chloride values. When studying the same genotypes, CFTR function rescue by CFTR modulators in organoids correlated tightly with mean improvement in lung function (r2=0.90) and sweat chloride (r2=0.95) reported in clinical trials. We identified candidate genotypes for modulator therapy, such as E92K, Q237E, R334W and L159S. Based on organoid results, two subjects started modulator treatment: one homozygous for complex allele Q359K_T360K, and the second with mutation E60K. Both subjects had major clinical benefit. CONCLUSIONS: Measurements of residual CFTR function and rescue of function by CFTR modulators in intestinal organoids correlate closely with clinical data. Our results for reference genotypes concur with previous results. CFTR function measured in organoids can be used to guide precision medicine in patients with CF, positioning organoids as a potential in vitro model to bring treatment to patients carrying rare CFTR mutations.
Asunto(s)
Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Homocigoto , Humanos , Transporte Iónico , Mutación , Organoides/metabolismoRESUMEN
Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Endoteliales/metabolismo , Humanos , Fenotipo , TranscriptomaRESUMEN
We present a compressive lens-free technique that performs tomographic imaging across a cubic millimeter-scale volume from highly sparse data. Compared with existing lens-free 3D microscopy systems, our method requires an order of magnitude fewer multi-angle illuminations for tomographic reconstruction, leading to a compact, cost-effective and scanning-free setup with a reduced data acquisition time to enable high-throughput 3D imaging of dynamic biological processes. We apply a fast proximal gradient algorithm with composite regularization to address the ill-posed tomographic inverse problem. Using simulated data, we show that the proposed method can achieve a reconstruction speed â¼10× faster than the state-of-the-art inverse problem approach in 3D lens-free microscopy. We experimentally validate the effectiveness of our method by imaging a resolution test chart and polystyrene beads, demonstrating its capability to resolve micron-size features in both lateral and axial directions. Furthermore, tomographic reconstruction results of neuronspheres and intestinal organoids reveal the potential of this 3D imaging technique for high-resolution and high-throughput biological applications.
Asunto(s)
Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Intestinos/diagnóstico por imagen , Microscopía/métodos , Organoides/diagnóstico por imagen , Tomografía/métodos , Algoritmos , Animales , Técnicas de Cultivo de Célula , Simulación por Computador , Compresión de Datos , Hipocampo/embriología , Humanos , Neuronas/citología , Fantasmas de Imagen , RatasRESUMEN
RATIONALE: Gene therapy holds promise for a curative mutation-independent treatment applicable to all patients with cystic fibrosis (CF). The various viral vector-based clinical trials conducted in the past have demonstrated safety and tolerance of different vectors, but none have led to a clear and persistent clinical benefit. Recent clinical breakthroughs in recombinant adeno-associated viral vector (rAAV)-based gene therapy encouraged us to reexplore an rAAV approach for CF. OBJECTIVES: We evaluated the preclinical potential of rAAV gene therapy for CF to restore chloride and fluid secretion in two complementary models: intestinal organoids derived from subjects with CF and a CF mouse model, an important milestone toward the development of a clinical rAAV candidate for CF gene therapy. METHODS: We engineered an rAAV vector containing a truncated CF transmembrane conductance regulator (CFTRΔR) combined with a short promoter (CMV173) to ensure optimal gene expression. A rescue in chloride and fluid secretion after rAAV-CFTRΔR treatment was assessed by forskolin-induced swelling in CF transmembrane conductance regulator (CFTR)-deficient organoids and by nasal potential differences in ΔF508 mice. MEASUREMENTS AND MAIN RESULTS: rAAV-CFTRΔR transduction of human CFTR-deficient organoids resulted in forskolin-induced swelling, indicating a restoration of CFTR function. Nasal potential differences demonstrated a clear response to low chloride and forskolin perfusion in most rAAV-CFTRΔR-treated CF mice. CONCLUSIONS: Our study provides robust evidence that rAAV-mediated gene transfer of a truncated CFTR functionally rescues the CF phenotype across the nasal mucosa of CF mice and in patient-derived organoids. These results underscore the clinical potential of rAAV-CFTRΔR in offering a cure for all patients with CF in the future.
Asunto(s)
Fibrosis Quística/terapia , Dependovirus , Terapia Genética/métodos , Vectores Genéticos , Intestinos , Organoides , Animales , Líquidos Corporales/metabolismo , Canales de Cloruro/genética , Cloruros/metabolismo , Colforsina/farmacología , Fibrosis Quística/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Genotipo , Células HeLa , Humanos , Ratones , Organoides/metabolismo , Transducción GenéticaRESUMEN
Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585-1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools.
Asunto(s)
Simulación por Computador , Técnicas Genéticas , Isoformas de ARN/genética , Empalme del ARN , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación , Isoformas de ARN/análisis , Sitios de Empalme de ARN/genéticaRESUMEN
This case report presents a 14-month-old boy with a history of cystic fibrosis (CF) carrier status, diagnosed following a positive newborn screening for CF (CF-NBS), who developed symptoms suggestive of Pseudo-Bartter syndrome (PBS). Despite initial evaluations not meeting CF diagnostic criteria, subsequent investigations revealed an intermediate sweat chloride concentration, a second CFTR mutation, and CFTR dysfunction through rectal organoid morphology analysis (ROMA) consistent with CFTR-related disorder (CFTR-RD). This case raises important considerations regarding the diagnosis and management of CFTR-RD. PBS can be considered as a rare presentation of CFTR-RD and can occur in children with sweat chloride below the CF range. Functional testing of CFTR by ROMA enabled a more accurate diagnosis. Despite the negative work-up after CF-NBS, this infant developed CFTR-RD, but this should not be considered as a screen failure. Follow-up of children with CFTR-RD at a CF centre is preferred, because of the risk of developing CF.
RESUMEN
Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Células Epiteliales , Edición Génica , Mutación , Organoides , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Fibrosis Quística/metabolismo , Organoides/metabolismo , Edición Génica/métodos , Células Epiteliales/metabolismo , Mutación/genética , Células HEK293 , Sistemas CRISPR-Cas/genéticaRESUMEN
BACKGROUND: The forskolin-induced swelling (FIS) assay measures CFTR function on patient-derived intestinal organoids (PDIOs) and may guide treatment selection for individuals with Cystic Fibrosis (CF). The aim of this study is to demonstrate the repeatability and reproducibility of the FIS assay following a detailed Standard Operating Procedure (SOP), thus advancing the validation of the assay for precision medicine (theranostic) applications. METHODS: Over a 2-year period, FIS responses to CFTR modulators were measured in four European labs. PDIOs from six subjects with CF carrying different CFTR genotypes were used to assess the repeatability and reproducibility across the dynamic range of the assay. RESULTS: Technical, intra-assay repeatability was high (Lin's concordance correlation coefficient (CCC) 0.95-0.98). Experimental, within-subject repeatability was also high within each lab (CCCs all >0.9). Longer-term repeatability (>1 year) showed more variability (CCCs from 0.67 to 0.95). The reproducibility between labs was also high (CCC ranging from 0.92 to 0.97). Exploratory analysis also found that between-lab percentage of agreement of dichotomized CFTR modulator outcomes for predefined FIS thresholds ranged between 78 and 100 %. CONCLUSIONS: The observed repeatability and reproducibility of the FIS assay within and across different labs is high and support the use of FIS as biomarker of CFTR function in the presence or absence of CFTR modulators.
Asunto(s)
Colforsina , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Organoides , Humanos , Fibrosis Quística/tratamiento farmacológico , Organoides/efectos de los fármacos , Reproducibilidad de los Resultados , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Colforsina/farmacología , Quinolonas/farmacología , Intestinos/efectos de los fármacos , Masculino , Aminofenoles/farmacología , FemeninoRESUMEN
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Medicina de Precisión , Mutación , Bronquios/metabolismoRESUMEN
Introduction: Cystic fibrosis (CF) is a severe monogenic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Several types of CFTR modulators (correctors/potentiators) have been developed to overcome protein dysfunction associated with these mutations. CFTR modulator therapy is now available for the major CF-causing mutations; however, 10% of people with CF remain without causal treatments. By combining investigational and market-approved CFTR modulators, we aimed to maximise functional rescue of iva-, luma- and tezacaftor refractory mutants G85E and N1303K. Methods: We used the well-established forskolin-induced swelling (FIS) in primary rectal organoids to assess responses to different CFTR corrector and potentiator types. The FIS analysis was performed with brightfield microscopy, allowing both 1-h and 24-h follow-up. Corrector and potentiator activity of elexacaftor was investigated. Results: For G85E, maximal rescue was observed by a combination of elexacaftor and corr4a. For N1303K, the quadruple combination teza-elexa-ivacaftor with apigenin was required to obtain a rescue similar to that of luma-ivacaftor rescued F508del. Elexacaftor rescued G85E and N1303K by different mechanisms, with chronic corrector effects on G85E and acute potentiation of N1303K only in the presence of ivacaftor. Synergy in N1303K rescue for iva-elexacaftor and apigenin suggests at least three potentiator mechanisms for this mutant. 24-h FIS identified ivacaftor as the main CFTR modulator for N1303K and elexacaftor and apigenin as co-potentiators. Conclusions: Novel combinations of CFTR modulators can further improve functional rescue of G85E and N1303K in rectal organoids, although for N1303K, more effective CFTR modulators are still needed.
RESUMEN
BACKGROUND: In cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation. METHODS: Genetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated. RESULTS: Organoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation. CONCLUSIONS: In vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Alelos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación , FenotipoRESUMEN
Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Background. The most common CFTR mutation, F508del, presents with multiple cellular defects. However, the possible multiple defects caused by many rarer CFTR mutations are not well studied. We investigated four rare CFTR mutations E60K, G85E, E92K and A455E against well-characterized mutations, F508del and G551D, and their responses to corrector VX-809 and/or potentiator VX-770. Methods. Using complementary assays in HEK293T stable cell lines, we determined maturation by Western blotting, trafficking by flow cytometry using extracellular 3HA-tagged CFTR, and function by halide-sensitive YFP quenching. In the forskolin-induced swelling assay in intestinal organoids, we validated the effect of tagged versus endogenous CFTR. Results. Treatment with VX-809 significantly restored maturation, PM localization and function of both E60K and E92K. Mechanistically, VX-809 not only raised the total amount of CFTR, but significantly increased the traffic efficiency, which was not the case for A455E. G85E was refractory to VX-809 and VX-770 treatment. Conclusions. Since no single model or assay allows deciphering all defects at once, we propose a combination of phenotypic assays to collect rapid and early insights into the multiple defects of CFTR variants.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación/genética , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/metabolismoRESUMEN
This protocol describes the isolation, handling, culture of, and experiments with human colon stem cell organoids in the context of cystic fibrosis (CF). In human colon organoids, the function of cystic fibrosis transmembrane conductance regulator (CFTR) protein and its rescue by CFTR modulators can be quantified using the forskolin-induced swelling assay. Implementation procedures and validation experiments are described for six CF human colon organoid lines, and representative CFTR genotypes are tested for basal CFTR function and response to CFTR-modulating drugs. For complete details on the use and execution of this protocol, please refer to Dekkers et al (2016) and Berkers and van Mourik (2019).