Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biochemistry ; 63(12): 1534-1542, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38804064

RESUMEN

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog , Neuroblastoma , Transducción de Señal , Proteínas Supresoras de Tumor , Humanos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neuroblastoma/genética , Neuroblastoma/patología , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tretinoina/farmacología
2.
FASEB J ; 35(9): e21814, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369624

RESUMEN

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocondrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/genética , Adaptación Biológica/genética , Apoptosis/genética , Línea Celular Tumoral , Metabolismo Energético/genética , Glucosa/genética , Células Hep G2 , Homeostasis/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Estrés Fisiológico/genética , Activación Transcripcional/genética
3.
Biol Reprod ; 102(2): 327-338, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31511857

RESUMEN

The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha, regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17ß-estradiol (E2) by RNA-seq to obtain global expression profiles of protein-coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2, and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2 regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.


Asunto(s)
Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transcriptoma/efectos de los fármacos , Útero/efectos de los fármacos , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Bases de Datos Genéticas , Femenino , Ontología de Genes , Neoplasias de los Genitales Femeninos/genética , Neoplasias de los Genitales Femeninos/metabolismo , Neoplasias de los Genitales Femeninos/mortalidad , Humanos , Ratones , Ovariectomía , ARN Largo no Codificante/genética , ARN Mensajero/genética , Tasa de Supervivencia , Útero/metabolismo
4.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466143

RESUMEN

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be "junk" DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


Asunto(s)
Elementos de Facilitación Genéticos , Estrógenos/metabolismo , ARN Largo no Codificante/metabolismo , ARN Pequeño no Traducido/metabolismo , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Pequeño no Traducido/genética , Activación Transcripcional
5.
BMC Geriatr ; 16: 80, 2016 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-27060904

RESUMEN

BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually or as a group across an entire gene for association to aging phenotypes using family based tests. RESULTS: We found significant associations to three genes and nine single variants. Most notably, we found a novel variant significantly associated with exceptional survival in the 3' UTR OBFC1 in 13 individuals from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). CONCLUSIONS: Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants.


Asunto(s)
Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Longevidad/genética , Linaje , Fenotipo , Anciano , Femenino , Pruebas Genéticas , Variación Genética/genética , Humanos , Masculino
6.
Noncoding RNA ; 10(4)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39051374

RESUMEN

Tuberculosis (TB) is the leading cause of death among people with HIV-1 infection. To improve the diagnosis and treatment of HIV-TB patients, it is important to understand the mechanisms underlying these conditions. Here, we used an integrated genomics approach to analyze and determine the lncRNAs that are dysregulated in HIV-TB patients and HIV-TB patients undergoing anti-retroviral therapy (ART) using a dataset available in the public domain. The analyses focused on the portion of the genome transcribed into non-coding transcripts, which historically have been poorly studied and received less focus. This revealed that Mtb infection in HIV prominently up-regulates the expression of long non-coding RNA (lncRNA) genes DAAM2-AS1, COL4A2-AS1, LINC00599, AC008592.1, and CLRN1-AS1 and down-regulates the expression of lncRNAs AC111000.4, AC100803.3, AC016168.2, AC245100.7, and LINC02073. It also revealed that ART down-regulates the expression of some lncRNA genes (COL4A2-AS1, AC079210.1, MFA-AS1, and LINC01993) that are highly up-regulated in HIV-TB patients. Furthermore, the interrogation of the genomic regions that are associated with regulated lncRNAs showed enrichment for biological processes linked to immune pathways in TB-infected conditions. However, intriguingly, TB patients treated with ART showed completely opposite and non-overlapping pathways. Our findings suggest that lncRNAs could be used to identify critical diagnostic, prognostic, and treatment targets for HIV-TB patients.

7.
Genome Res ; 20(12): 1711-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21041413

RESUMEN

Pooled-DNA sequencing strategies enable fast, accurate, and cost-effect detection of rare variants, but current approaches are not able to accurately identify short insertions and deletions (indels), despite their pivotal role in genetic disease. Furthermore, the sensitivity and specificity of these methods depend on arbitrary, user-selected significance thresholds, whose optimal values change from experiment to experiment. Here, we present a combined experimental and computational strategy that combines a synthetically engineered DNA library inserted in each run and a new computational approach named SPLINTER that detects and quantifies short indels and substitutions in large pools. SPLINTER integrates information from the synthetic library to select the optimal significance thresholds for every experiment. We show that SPLINTER detects indels (up to 4 bp) and substitutions in large pools with high sensitivity and specificity, accurately quantifies variant frequency (r = 0.999), and compares favorably with existing algorithms for the analysis of pooled sequencing data. We applied our approach to analyze a cohort of 1152 individuals, identifying 48 variants and validating 14 of 14 (100%) predictions by individual genotyping. Thus, our strategy provides a novel and sensitive method that will speed the discovery of novel disease-causing rare variants.


Asunto(s)
Biología Computacional/métodos , Biblioteca de Genes , Mutación INDEL/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Frecuencia de los Genes , Genotipo , Humanos , Sensibilidad y Especificidad
8.
Arch Esp Urol ; 66(1): 180-5, 2013.
Artículo en Español | MEDLINE | ID: mdl-23406814

RESUMEN

Renal graft neoplasias are a rare complication,possibly due to the immunosuppressive therapy itself and increased susceptibility to potentially oncogenic viruses. Few case series have been reported in the literature on the treatment of such tumors, so far there is no clear consensus on how to deal with them. We conducted an exhaustive review of the literature to examine the treatment performed by different authors.


Asunto(s)
Neoplasias Renales/etiología , Neoplasias Renales/terapia , Trasplante de Riñón/efectos adversos , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/etiología , Carcinoma de Células Renales/terapia , Humanos , Inmunosupresores/efectos adversos , Neoplasias Renales/diagnóstico , Neoplasias Renales/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos
9.
Noncoding RNA Res ; 8(3): 282-293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36970372

RESUMEN

Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.

10.
Biochimie ; 211: 1-15, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36809827

RESUMEN

Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.


Asunto(s)
Macrófagos , Metionina Sulfóxido Reductasas , Mycobacterium smegmatis , Animales , Ratones , Macrófagos/microbiología , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
ACS Sustain Chem Eng ; 11(29): 10864-10873, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502771

RESUMEN

Polyurethane foams (PUFs) are widely used commodity materials, but most of them end up in landfills at the end of their life, which is not in line with the circular economy approach. Here, we introduce microwave-assisted aminolysis with amine reagents that contain primary and tertiary amino groups in the structure. These reagents enable complete degradation of the urethane groups in the structure of the flexible PUFs with a much lower amount of degradation reagent than is typically required for solvolysis reactions. The purified, recovered polyols are close equivalents to the corresponding virgin polyols in terms of their structural and molar mass characteristics. Therefore, they can be used for the production of high-quality PUFs without having to adapt the synthesis process. The flexible PUFs made from recovered polyols have comparable mechanical properties to those made from virgin polyols.

12.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37513866

RESUMEN

The long-term use of psychopharmacology medications in autism spectrum disorder (ASD) hitherto remains controversial due to a lack of evidence about safety and tolerability. In this regard, genotyping the metabolizing enzyme cytochrome P450 (CYP) 2D6, especially its extreme phenotypes, could help to prevent drug-related adverse reactions or adverse events (AEs). There are several medications warranting CYP2D6 screening that are consumed by people with ASD, such as risperidone and aripiprazole to name a few. A naturalistic observational study was carried out in participants with ASD to analyze the influence of the CYP2D6 phenotype in drug tolerability using a local pharmacovigilance system created for this study. In this case, AEs were identified from participants' electronic health records (EHRs) and paper registries. Other variables were collected: socio-demographic information, comorbidities, and psychopharmacology prescriptions (polypharmacy defined as ≥4 simultaneous prescriptions) and doses. The genetic analysis included allelic discrimination (CYP2D6*1, *2, *3, *4, *5, *6, *10, *17, and *41) and copy number variations. All of these were used to determine theoretical phenotypes of the metabolic profiles: poor (PM); intermediate (IM); normal (NM); and ultra-rapid (UM). Sex differences were analyzed. A total of 71 participants (30 ± 10 years old, 82% male, 45% CYP2D6 NM phenotype (32 participants)) with a median of 3 (IQR 2-4) comorbidities per person, mainly urinary incontinence (32%) and constipation (22%), were included. CYP2D6 UM showed the highest rate of polypharmacy, whilst, IM participants had the highest rates of neurological and psychiatric AEs, even worse if a CYP2D6 inhibitor drug was prescribed simultaneously. CYP2D6 pharmacogenomics and the monitoring of new antipsychotic prescriptions may make a difference in medication safety in adults with ASD. Particularly in those with psychopharmacology polymedication, it can help with AE avoidance and understanding.

13.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895967

RESUMEN

INTRODUCTION: Up to 73% of individuals with autism spectrum disorder (ASD) and intellectual disability (ID) currently have prescriptions for psychotropic drugs. This is explained by a higher prevalence of medical and psychiatric chronic comorbidities, which favors polypharmacy, increasing the probability of the appearance of adverse events (AEs). These could be a preventable cause of harm to patients with ASD and an unnecessary waste of healthcare resources. OBJECTIVE: To study the impact of pharmacogenetic markers on the prevention of AE appearance in a population with ASD and ID. METHODS: This is a cross-sectional, observational study (n = 118, 72 participants completed all information) in the ASD population. Sociodemographic and pharmacological data were gathered. The Udvalg for Kliniske Undersøgelser Scale (UKU Scale) was used to identify AEs related to the use of psychotropic medication. Polymorphisms of DOP2, ABCB1, and COMT were genotyped and correlated with the AE to find candidate genes. Furthermore, a review of all medications assessed in a clinical trial for adults with autism was performed to enrich the search for potential pharmacogenetic markers, keeping in mind the usual medications. RESULTS: The majority of the study population were men (75%) with multiple comorbidities and polypharmacy, the most frequently prescribed drugs were antipsychotics (69%); 21% of the participants had four or more AEs related to psychotropic drugs. The most common were "Neurological" and" Psychiatric" (both 41%). Statistical analysis results suggested a significant correlation between the neurological symptoms and the DOP2 genotype, given that they are not equally distributed among its allelic variants. The final review considered 19 manuscripts of medications for adults with ASD, and the confirmed genetic markers for those medications were consulted in databases. CONCLUSION: A possible correlation between neurologic AEs and polymorphisms of DOP2 was observed; therefore, studying this gene could contribute to the safety of this population's prescriptions. The following studies are underway to maximize statistical power and have a better representation of the population.

14.
BMC Genomics ; 13: 683, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23216810

RESUMEN

BACKGROUND: Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. RESULTS: We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw reads against the entire genome using Novoalign followed by variant calling of non-indexed pools using SPLINTER or SAMtools for indexed samples. With these pipelines, we find sensitivity and specificity of 99.4% and 99.7% for pooled exome sequencing. Sensitivity, and to a lesser degree specificity, proved to be a function of coverage. For rare variants (≤2% minor allele frequency), we achieved sensitivity and specificity of ≥94.9% and ≥99.99% for custom capture of 2.5 Mb in multiplexed libraries of 22-48 individuals with only ≥5-fold coverage/chromosome, but these parameters improved to ≥98.7 and 100% with 20-fold coverage/chromosome. CONCLUSIONS: This highly scalable methodology enables accurate rare variant detection, with or without individual DNA sample indexing, while reducing the amount of required source DNA and total costs through less hybridization reagent consumption, multi-sample sonication in a standard PCR plate, multiplexed pre-enrichment pooling with a single hybridization and lesser sequencing coverage required to obtain high sensitivity.


Asunto(s)
Algoritmos , Exoma , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Programas Informáticos , Alelos , Femenino , Frecuencia de los Genes , Biblioteca de Genes , Pruebas Genéticas/métodos , Humanos , Masculino , Núcleo Familiar , Sensibilidad y Especificidad , Alineación de Secuencia
15.
Hum Genet ; 131(11): 1725-38, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22729463

RESUMEN

Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5% of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.


Asunto(s)
Exoma/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Mutación/genética , Proteínas Proto-Oncogénicas c-ret/genética , Sistema Urinario/anomalías , Sistema Urinario/patología , Reflujo Vesicoureteral/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Western Blotting , Células Cultivadas , Estudios de Cohortes , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Linaje , Fenotipo , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple/genética , Homología de Secuencia de Aminoácido , Estados Unidos/epidemiología , Sistema Urinario/metabolismo , Anomalías Urogenitales , Reflujo Vesicoureteral/epidemiología , Adulto Joven
16.
Cell Death Dis ; 13(9): 766, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064715

RESUMEN

Zinc Finger transcription factors are crucial in modulating various cellular processes, including differentiation. Chromatin reader Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8), an All-Trans Retinoic Acid (ATRA)-responsive gene, was previously shown to play a crucial role in promoting the expression of neuronal-lineage committed genes. Here, we report that ZMYND8 promotes neuronal differentiation by positively regulating canonical MAPT protein-coding gene isoform, a key player in the axonal development of neurons. Additionally, ZMYND8 modulates gene-isoform switching by epigenetically silencing key regulatory regions within the MAPT gene, thereby suppressing the expression of non-protein-coding isoforms such as MAPT213. Genetic deletion of ZMYND8 led to an increase in the MAPT213 that potentially suppressed the parental MAPT protein-coding transcript expression related to neuronal differentiation programs. In addition, ectopic expression of MAPT213 led to repression of MAPT protein-coding transcript. Similarly, ZMYND8-driven transcription regulation was also observed in other neuronal differentiation-promoting genes. Collectively our results elucidate a novel mechanism of ZMYND8-dependent transcription regulation of different neuronal lineage committing genes, including MAPT, to promote neural differentiation.


Asunto(s)
ARN Largo no Codificante , Diferenciación Celular/genética , Cromatina , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Tretinoina/farmacología , Proteínas Supresoras de Tumor/metabolismo
17.
Environ Anal Health Toxicol ; 37(4): e2022034-0, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36916047

RESUMEN

This study aimed to evaluate whether aluminum chloride (AlCl3) causes hematological changes in the peripheral blood of Sprague-Dawley (SD) rats. Five groups of female SD rats were intragastrically administered with 4 different concentrations of AlCl3 for 5 days a week for a total of 90 days. The aluminum concentration was determined via graphite furnace atomic absorption spectroscopy. Analysis of serum iron-kinetic profiles, blood cytometry outcomes, and blood smears of the blood samples. Scanning electron microscopy (SEM) and Raman spectroscopy were used to search for structural and ultrastructural changes, respectively. Blood aluminum concentration ranged 12.38-16.24 µg/L with no significant difference between experimental treatments. At the AlCl3 concentration of 40 mg Al/kg bw of rats/day, the mean ferritin value in the serum iron kinetic profile was 29.81±6.1 ng/mL, and this value showed a significant difference between experimental treatments. Blood cytometry revealed that there were 6.45-7.11×106 cells/µL erythrocytes, 8.91-9.32×103 cells/µL leukocytes, and 477.2-736.3×103 cells/µL platelets along with a hemoglobin of 37.38-41.93 g/dL and hematocrit level of 37.38-41.93%; the experimental treatments showed no significant differences. Erythrocyte structural analysis using SEM showed no differences between experimental treatments, whereas ultrastructural evaluation using Raman spectroscopy made it possible to identify the following bands: 741, 1123, 1350, 1578, and 1618 cm-1, which were respectively associated with the following vibrational modes and compounds: vibration of the tryptophan ring, asymmetric C-O-C stretching of glucose, C-H curve of tryptophan, C=C stretching of the heme group, and C-N stretching of the heme group, with no significant differences between experimental treatments. Therefore, AlCl3 administration does not induce ultrastructural changes in the erythrocyte membrane. This study revealed that serum ferritin concentration was the only parameter affected by AlCl3 exposure at 40 mg of Al/kg bw of rats/day.

18.
Front Immunol ; 12: 738431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707609

RESUMEN

Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.


Asunto(s)
Células Epiteliales/microbiología , Mycoplasma genitalium/patogenicidad , Mycoplasma pneumoniae/patogenicidad , Transcriptoma , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Mycoplasma genitalium/inmunología , Mycoplasma pneumoniae/inmunología , Mapas de Interacción de Proteínas , RNA-Seq , Transducción de Señal , Secuenciación del Exoma
19.
Transl Psychiatry ; 11(1): 341, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078872

RESUMEN

Interleukins and neurotrophins levels are altered in the periphery of patients with major depression and suicidal behavior, however it is not clear if similar abnormalities occur in the central nervous system. Our objective was to examine the association of IL-6, IL-1ß, BDNF, and GDNF levels between postmortem plasma, cerebrospinal fluid (CSF), and brain tissue in a heterogeneous diagnostic subject groups including normal controls, mood disorders only, mood disorders with AUD/SUD (alcohol abuse disorder, substance abuse disorder), and AUD/SUD without mood disorders. To address these questions we collected postmortem plasma (n = 29), CSF (n = 28), and brain (BA10) (n = 57) samples from individuals with mood disorder, mood disorder with AUD/SUD, AUD/SUD and normal controls. These samples were analyzed using a multiplex based luminex assay with a customized 4-plex cytokine/interleukins- IL-6, IL-1ß, BDNF, and GDNF human acute phase based on xMAP technology platform. Protein levels were determined using a Luminex 200 instrument equipped with Xponent-analyzing software. We observed IL-6 (p = 2.1e-07), and GDNF (p = 0.046) were significantly correlated between brain and CSF. In addition, IL-6 (p = 0.031), were significantly correlated between brain and plasma. Overall diagnostic group analysis showed a significant difference with brain GDNF, p = 0.0106. Pairwise comparisons showed that GDNF level is-39.9 ± 12 pg/ml, p = 0.0106, was significantly higher than in the brains derived from mood disorders compared to normal controls, -23.8 ± 5.5 pg/ml, p = 0.034. Brain BDNF was higher in suicide (p = 0.0023), males compared to females (p = 0.017), and psychiatric medication treated vs. non-treated (p = 0.005) individuals. Overall, we demonstrate that blood IL-6, GDNF and BDNF could be informative peripheral biomarkers of brain biology associated with mood disorders, substance disorders, and suicide.


Asunto(s)
Trastorno Depresivo Mayor , Suicidio , Factor Neurotrófico Derivado del Encéfalo , Sistema Nervioso Central , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Masculino , Trastornos del Humor
20.
Eur J Intern Med ; 89: 97-103, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34090748

RESUMEN

BACKGROUND: The kinetics of the antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs to be evaluated since long-term duration of antibody remains largely unknown, particularly in infected healthcare workers (HCW). METHODS: Prospective study, evaluating the longitudinal profile of anti-SARS-CoV-2 antibody titers in a random sample of 331 seropositive healthcare workers (HCW) of Spanish Hospitals Group. Serial measurements of serum IgG-anti-SARS-CoV-2 were obtained at baseline (April-May,2020), and in 2 follow-up visits. Linear mixed models were used to investigate antibody kinetics and associated factors. RESULTS: A total of 306 seropositive subjects (median age: 44.7years;69.9% female) were included in the final analysis. After a median follow-up of 274 days between baseline and final measurement, 235(76.8%) maintained seropositivity. Antibody titers decreased in 82.0%, while remained stable in 13.1%. Factors associated with stability of antibodies over time included age≥45 years, higher baseline titers, severe/moderate infection and high-grade exposure to COVID-19 patients. In declining profile, estimated mean antibody half-life was 146.3 days(95%CI:138.6-154.9) from baseline. Multivariate models show independent longer durability of antibodies in HCW with high-risk exposure to COVID-19 patients (+14.1 days;95%CI:0.6-40.2) and with symptomatic COVID-19 (+14.1 days;95%CI:0.9-43.0). The estimated mean time to loss antibodies was 375(95% CI:342-408) days from baseline. CONCLUSIONS: We present the first study measuring the kinetics of antibody response against SARS-CoV-2 in HCW beyond 6 months. Most participants remained seropositive after 9 months but presented a significant decline in antibody-titers. Two distinct antibody dynamic profiles were observed (declining vs. stable). Independent factors associated with longer durability of antibodies were symptomatic infection and higher exposure to COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , Femenino , Estudios de Seguimiento , Personal de Salud , Humanos , Cinética , Masculino , Persona de Mediana Edad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA