Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ann Neurol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888142

RESUMEN

OBJECTIVE: To determine whether plasma phosphorylated-Tau181 (pTau181) could be used as a diagnostic biomarker of concurrent Alzheimer's disease neuropathologic change (ADNC) or amyloidosis alone, as well as a prognostic, monitoring, and susceptibility/risk biomarker for clinical outcomes in Lewy body disease (LBD). METHODS: We studied 565 participants: 94 LBD with normal cognition, 83 LBD with abnormal cognition, 114 with Alzheimer's disease, and 274 cognitively normal. Plasma pTau181 levels were measured with the Lumipulse G platform. Diagnostic accuracy for concurrent ADNC and amyloidosis was assessed with Receiver Operating Characteristic curves in a subset of participants with CSF pTau181/Aß42, and CSF Aß42/Aß40 or amyloid-ß PET, respectively. Linear mixed effects models were used to examine the associations between baseline and longitudinal plasma pTau181 levels and clinical outcomes. RESULTS: Plasma pTau181 predicted concurrent ADNC and amyloidosis in LBD with abnormal cognition with 87% and 72% accuracy, respectively. In LBD patients with abnormal cognition, higher baseline plasma pTau181 was associated with worse baseline MoCA and CDR-SB, as well as accelerated decline in CDR-SB. Additionally, in this group, rapid increases in plasma pTau181 over 3 years predicted a faster decline in CDR-SB and memory. In LBD patients with normal cognition, there was no association between baseline or longitudinal plasma pTau181 levels and clinical outcomes; however, elevated pTau181 at baseline increased the risk of conversion to cognitive impairment. INTERPRETATION: Our findings suggest that plasma pTau181 is a promising biomarker for concurrent ADNC and amyloidosis in LBD. Furthermore, plasma pTau181 holds potential as a prognostic, monitoring, and susceptibility/risk biomarker, predicting disease progression in LBD. ANN NEUROL 2024.

2.
Neuropsychologia ; 195: 108786, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181845

RESUMEN

Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Preescolar , Niño , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Lóbulo Temporal/diagnóstico por imagen , Cognición
3.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38539014

RESUMEN

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Metabolismo Energético , Microglía , Receptor Activador Expresado en Células Mieloides 1 , Animales , Ratones , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética
4.
Sci Transl Med ; 15(702): eabm6267, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37379371

RESUMEN

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS) that causes substantial morbidity and diminished quality of life. Evidence highlights the central role of myeloid lineage cells in the initiation and progression of MS. However, existing imaging strategies for detecting myeloid cells in the CNS cannot distinguish between beneficial and harmful immune responses. Thus, imaging strategies that specifically identify myeloid cells and their activation states are critical for MS disease staging and monitoring of therapeutic responses. We hypothesized that positron emission tomography (PET) imaging of triggering receptor expressed on myeloid cells 1 (TREM1) could be used to monitor deleterious innate immune responses and disease progression in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We first validated TREM1 as a specific marker of proinflammatory, CNS-infiltrating, peripheral myeloid cells in mice with EAE. We show that the 64Cu-radiolabeled TREM1 antibody-based PET tracer monitored active disease with 14- to 17-fold higher sensitivity than translocator protein 18 kDa (TSPO)-PET imaging, the established approach for detecting neuroinflammation in vivo. We illustrate the therapeutic potential of attenuating TREM1 signaling both genetically and pharmacologically in the EAE mice and show that TREM1-PET imaging detected responses to an FDA-approved MS therapy with siponimod (BAF312) in these animals. Last, we observed TREM1+ cells in clinical brain biopsy samples from two treatment-naïve patients with MS but not in healthy control brain tissue. Thus, TREM1-PET imaging has potential for aiding in the diagnosis of MS and monitoring of therapeutic responses to drug treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Esclerosis Múltiple/diagnóstico por imagen , Receptor Activador Expresado en Células Mieloides 1 , Calidad de Vida , Sistema Nervioso Central/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Células Mieloides , Proteínas Portadoras , Tomografía de Emisión de Positrones/métodos , Ratones Endogámicos C57BL
5.
Alzheimers Res Ther ; 14(1): 172, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371232

RESUMEN

BACKGROUND: The recent promise of disease-modifying therapies for Alzheimer's disease (AD) has reinforced the need for accurate biomarkers for early disease detection, diagnosis and treatment monitoring. Advances in the development of novel blood-based biomarkers for AD have revealed that plasma levels of tau phosphorylated at various residues are specific and sensitive to AD dementia. However, the currently available tests have shortcomings in access, throughput, and scalability that limit widespread implementation. METHODS: We evaluated the diagnostic and prognostic performance of a high-throughput and fully-automated Lumipulse plasma p-tau181 assay for the detection of AD. Plasma from older clinically unimpaired individuals (CU, n = 463) and patients with mild cognitive impairment (MCI, n = 107) or AD dementia (n = 78) were obtained from the longitudinal Stanford University Alzheimer's Disease Research Center (ADRC) and the Stanford Aging and Memory Study (SAMS) cohorts. We evaluated the discriminative accuracy of plasma p-tau181 for clinical AD diagnosis, association with amyloid ß peptides and p-tau181 concentrations in CSF, association with amyloid positron emission tomography (PET), and ability to predict longitudinal cognitive and functional change. RESULTS: The assay showed robust performance in differentiating AD from control participants (AUC 0.959, CI: 0.912 to 0.990), and was strongly associated with CSF p-tau181, CSF Aß42/Aß40 ratio, and amyloid-PET global SUVRs. Associations between plasma p-tau181 with CSF biomarkers were significant when examined separately in Aß+ and Aß- groups. Plasma p-tau181 significantly increased over time in CU and AD diagnostic groups. After controlling for clinical diagnosis, age, sex, and education, baseline plasma p-tau181 predicted change in MoCA overall and change in CDR Sum of Boxes in the AD group over follow-up of up to 5 years. CONCLUSIONS: This fully-automated and available blood-based biomarker assay therefore may be useful for early detection, diagnosis, prognosis, and treatment monitoring of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA