Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 597(7875): 263-267, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408323

RESUMEN

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.


Asunto(s)
Fructosa/farmacología , Jarabe de Maíz Alto en Fructosa/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Nutrientes/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Femenino , Fructoquinasas/metabolismo , Fructosa/metabolismo , Jarabe de Maíz Alto en Fructosa/metabolismo , Hipoxia/dietoterapia , Hipoxia/patología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Piruvato Quinasa/metabolismo
2.
Acta Physiol (Oxf) ; : e14167, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779820

RESUMEN

AIM: To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS: Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS: Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION: Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.

3.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577571

RESUMEN

The cancer associated cachexia syndrome (CACS) is a systemic metabolic disorder resulting in loss of body weight due to skeletal muscle and adipose tissues atrophy. CACS is particularly prominent in lung cancer patients, where it contributes to poor quality of life and excess mortality. Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.

4.
Clin Transl Med ; 13(10): e1391, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37759102

RESUMEN

BACKGROUND: Lung cancer remains the major cause of cancer-related deaths worldwide. Early stages of lung cancer are characterized by long asymptomatic periods that are ineffectively identified with the current screening programs. This deficiency represents a lost opportunity to improve the overall survival of patients. Serum biomarkers are among the most effective strategies for cancer screening and follow up. METHODS: Using bead-based multiplexing assays we screened plasma and tumours of the KrasG12D/+; Lkb1f/f (KL) mouse model of lung cancer for cytokines that could be used as biomarkers. We identified tissue inhibitor of metalloproteinase 1 (TIMP1) as an early biomarker and validated this finding in the plasma of lung cancer patients. We used immunohistochemistry (IHC), previously published single-cell RNA-seq and bulk RNA-seq data to assess the source and expression of TIMP1in the tumour. The prognostic value of TIMP1 was assessed using publicly available human proteomic and transcriptomic databases. RESULTS: We found that TIMP1 is a tumour-secreted protein with high sensitivity and specificity for aggressive cancer, even at early stages in mice. We showed that TIMP1 levels in the tumour and serum correlate with tumour burden and worse survival in mice. We validated this finding using clinical samples from our institution and publicly available human proteomic and transcriptomic databases. These data support the finding that high tumour expression of TIMP1 correlates with an unfavorable prognosis in lung cancer patients. CONCLUSION: TIMP1 is a suitable biomarker for lung cancer detection.


Asunto(s)
Neoplasias Pulmonares , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Animales , Ratones , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteómica , Pronóstico , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas de Neoplasias
5.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060450

RESUMEN

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Humanos , Animales , Ratones , Línea Celular , Ratones Endogámicos C57BL , Masculino , Femenino , Epinefrina/farmacología , Activación Enzimática/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Eliminación de Gen , Colforsina/farmacología , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Vía de Señalización Hippo/efectos de los fármacos , Vía de Señalización Hippo/genética
6.
Front Oncol ; 12: 903157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719965

RESUMEN

Cachexia is a debilitating comorbidity affecting many lung cancer patients. We have previously found that cachectic mice with lung cancer have reduced serum ketone body levels due to low PPARα activity in the liver. Restoring hepatic PPARα activity with fenofibrate increased circulating ketones and delayed muscle and white adipose tissue wasting. We hypothesized that the loss of circulating ketones plays a pathophysiologic role in cachexia and performed two dietary intervention studies to test this hypothesis. In the first study, male and female mice were randomized to consume either a very low carbohydrate, ketogenic diet (KD) or normal chow (NC) after undergoing tumor induction. The KD successfully restored serum ketone levels and decreased blood glucose in cachectic mice but did not improve body weight maintenance or survival. In fact, there was a trend for the KD to worsen survival in male but not in female mice. In the second study, we compounded a ketone ester supplement into the NC diet (KE) and randomized tumor-bearing mice to KE or NC after tumor induction. We confirmed that KE was able to acutely and chronically increase ketone body abundance in the serum compared to NC. However, the restoration of ketones in the circulation was not able to improve body weight maintenance or survival in male or female mice with lung cancer. Finally, we investigated PPARα activity in the liver of mice fed KE and NC and found that animals fed a ketone ester supplement showed a significant increase in mRNA expression of several PPARα targets. These data negate our initial hypothesis and suggest that restoring ketone body availability in the circulation of mice with lung cancer does not alter cachexia development or improve survival, despite increasing hepatic PPARα activity.

7.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984892

RESUMEN

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 2 , Hígado , Proteína Disulfuro Isomerasas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Epítopos , Antígenos de Histocompatibilidad Clase II , Hígado/patología , Ratones , Péptidos , Proteína Disulfuro Isomerasas/inmunología , Proteína Disulfuro Isomerasas/metabolismo
8.
Nat Commun ; 13(1): 4633, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941104

RESUMEN

Cancer cachexia is a common, debilitating condition with limited therapeutic options. Using an established mouse model of lung cancer, we find that cachexia is characterized by reduced food intake, spontaneous activity, and energy expenditure accompanied by muscle metabolic dysfunction and atrophy. We identify Activin A as a purported driver of cachexia and treat with ActRIIB-Fc, a decoy ligand for TGF-ß/activin family members, together with anamorelin (Ana), a ghrelin receptor agonist, to reverse muscle dysfunction and anorexia, respectively. Ana effectively increases food intake but only the combination of drugs increases lean mass, restores spontaneous activity, and improves overall survival. These beneficial effects are limited to female mice and are dependent on ovarian function. In agreement, high expression of Activin A in human lung adenocarcinoma correlates with unfavorable prognosis only in female patients, despite similar expression levels in both sexes. This study suggests that multimodal, sex-specific, therapies are needed to reverse cachexia.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Anorexia/complicaciones , Apetito , Caquexia/tratamiento farmacológico , Caquexia/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones
9.
Cancer Metab ; 9(1): 12, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762003

RESUMEN

BACKGROUND: Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation. METHODS: Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose. RESULTS: We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK). CONCLUSIONS: We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA