Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Immunol ; 22(2): 140-153, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33349708

RESUMEN

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagosomas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Mitogénicos/metabolismo , Linfocitos T/metabolismo , Animales , Muerte Celular , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células HEK293 , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Lectinas Tipo C/genética , Ligandos , Ratones , NADPH Oxidasas/metabolismo , Fagosomas/genética , Fagosomas/inmunología , Fosforilación , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/genética , Receptores Mitogénicos/genética , Transducción de Señal , Quinasa Syk/metabolismo , Linfocitos T/inmunología
2.
Nat Immunol ; 21(8): 880-891, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541830

RESUMEN

Bacterial lipopolysaccharide triggers human caspase-4 (murine caspase-11) to cleave gasdermin-D and induce pyroptotic cell death. How lipopolysaccharide sequestered in the membranes of cytosol-invading bacteria activates caspases remains unknown. Here we show that in interferon-γ-stimulated cells guanylate-binding proteins (GBPs) assemble on the surface of Gram-negative bacteria into polyvalent signaling platforms required for activation of caspase-4. Caspase-4 activation is hierarchically controlled by GBPs; GBP1 initiates platform assembly, GBP2 and GBP4 control caspase-4 recruitment, and GBP3 governs caspase-4 activation. In response to cytosol-invading bacteria, activation of caspase-4 through the GBP platform is essential to induce gasdermin-D-dependent pyroptosis and processing of interleukin-18, thereby destroying the replicative niche for intracellular bacteria and alerting neighboring cells, respectively. Caspase-11 and GBPs epistatically protect mice against lethal bacterial challenge. Multiple antagonists of the pathway encoded by Shigella flexneri, a cytosol-adapted bacterium, provide compelling evolutionary evidence for the importance of the GBP-caspase-4 pathway in antibacterial defense.


Asunto(s)
Caspasas Iniciadoras/inmunología , Proteínas de Unión al GTP/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Bacterias Gramnegativas/inmunología , Células HeLa , Humanos , Lipopolisacáridos/inmunología , Ratones , Piroptosis/inmunología
4.
EMBO J ; 42(17): e113012, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37409490

RESUMEN

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Esfingomielinas , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Mamíferos
5.
Nature ; 594(7861): 111-116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012115

RESUMEN

Ubiquitylation is a widespread post-translational protein modification in eukaryotes and marks bacteria that invade the cytosol as cargo for antibacterial autophagy1-3. The identity of the ubiquitylated substrate on bacteria is unknown. Here we show that the ubiquitin coat on Salmonella that invade the cytosol is formed through the ubiquitylation of a non-proteinaceous substrate, the lipid A moiety of bacterial lipopolysaccharide (LPS), by the E3 ubiquitin ligase ring finger protein 213 (RNF213). RNF213 is a risk factor for moyamoya disease4,5, which is a progressive stenosis of the supraclinoid internal carotid artery that causes stroke (especially in children)6,7. RNF213 restricts the proliferation of cytosolic Salmonella and is essential for the generation of the bacterial ubiquitin coat, both directly (through the ubiquitylation of LPS) and indirectly (through the recruitment of LUBAC, which is a downstream E3 ligase that adds M1-linked ubiquitin chains onto pre-existing ubiquitin coats8). In cells that lack RNF213, bacteria do not attract ubiquitin-dependent autophagy receptors or induce antibacterial autophagy. The ubiquitylation of LPS on Salmonella that invade the cytosol requires the dynein-like core of RNF213, but not its RING domain. Instead, ubiquitylation of LPS relies on an RZ finger in the E3 shell. We conclude that ubiquitylation extends beyond protein substrates and that ubiquitylation of LPS triggers cell-autonomous immunity, and we postulate that non-proteinaceous substances other than LPS may also become ubiquitylated.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Autofagia , Línea Celular , Células HeLa , Humanos , Ratones , Dominios RING Finger , Infecciones por Salmonella/microbiología , Ubiquitina/metabolismo
6.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853401

RESUMEN

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Relacionadas con la Autofagia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células HeLa , Humanos , Mitocondrias/química , Mitocondrias/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Peroxisomas/química , Peroxisomas/genética , Fosforilación , Proteínas Quinasas/genética , Multimerización de Proteína , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
7.
Mol Cell ; 74(2): 320-329.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853402

RESUMEN

Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia , Sitios de Unión/genética , Citoplasma/microbiología , Citosol/microbiología , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas Nucleares/química , Mutación Puntual/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/química , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad
8.
Cell ; 136(6): 1098-109, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303852

RESUMEN

Activation of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in immunity, requires binding of NF-kappaB essential modulator (NEMO) to ubiquitinated substrates. Here, we report that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO selectively binds linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif revealed a parallel coiled-coil dimer that formed a heterotetrameric complex with two linear diubiquitin molecules. The UBAN dimer contacted all four ubiquitin moieties, and the integrity of each binding site was required for efficient NF-kappaB activation. Binding occurred via a surface on the proximal ubiquitin moiety and the canonical Ile44 surface on the distal one, thereby providing specificity for linear chain recognition. Residues of NEMO involved in binding linear ubiquitin chains are required for NF-kappaB activation by TNF-alpha and other agonists, providing an explanation for the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency.


Asunto(s)
Quinasa I-kappa B/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Displasia Ectodérmica/metabolismo , Humanos , Quinasa I-kappa B/química , Modelos Moleculares , Unión Proteica , Ubiquitina/química , Ubiquitinas/química , Ubiquitinas/metabolismo , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947818

RESUMEN

Salmonella is an intracellular pathogen of a substantial global health concern. In order to identify key players involved in Salmonella infection, we performed a global host phosphoproteome analysis subsequent to bacterial infection. Thereby, we identified the kinase SIK2 as a central component of the host defense machinery upon Salmonella infection. SIK2 depletion favors the escape of bacteria from the Salmonella-containing vacuole (SCV) and impairs Xenophagy, resulting in a hyperproliferative phenotype. Mechanistically, SIK2 associates with actin filaments under basal conditions; however, during bacterial infection, SIK2 is recruited to the SCV together with the elements of the actin polymerization machinery (Arp2/3 complex and Formins). Notably, SIK2 depletion results in a severe pathological cellular actin nucleation and polymerization defect upon Salmonella infection. We propose that SIK2 controls the formation of a protective SCV actin shield shortly after invasion and orchestrates the actin cytoskeleton architecture in its entirety to control an acute Salmonella infection after bacterial invasion.


Asunto(s)
Actinas/metabolismo , Células Epiteliales/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Células Epiteliales/microbiología , Células HCT116 , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Ratones , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica/métodos , Interferencia de ARN , Salmonella/fisiología
10.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33987949

RESUMEN

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Asunto(s)
Mycobacterium tuberculosis , Pez Cebra , Animales , Galactanos , Galectinas/genética , Ratones
11.
J Virol ; 95(14): e0066321, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33963053

RESUMEN

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Asunto(s)
COVID-19 , Genoma Viral , Motivos de Nucleótidos , Pliegue del ARN , ARN Viral , SARS-CoV-2/fisiología , Replicación Viral , Animales , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Células Vero
12.
Nat Immunol ; 10(11): 1215-21, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19820708

RESUMEN

Cell-autonomous innate immune responses against bacteria attempting to colonize the cytosol of mammalian cells are incompletely understood. Polyubiquitylated proteins can accumulate on the surface of such bacteria, and bacterial growth is restricted by Tank-binding kinase (TBK1). Here we show that NDP52, not previously known to contribute to innate immunity, recognizes ubiquitin-coated Salmonella enterica in human cells and, by binding the adaptor proteins Nap1 and Sintbad, recruits TBK1. Knockdown of NDP52 and TBK1 facilitated bacterial proliferation and increased the number of cells containing ubiquitin-coated salmonella. NDP52 also recruited LC3, an autophagosomal marker, and knockdown of NDP52 impaired autophagy of salmonella. We conclude that human cells utilize the ubiquitin system and NDP52 to activate autophagy against bacteria attempting to colonize their cytosol.


Asunto(s)
Autofagia , Proteínas Nucleares/inmunología , Salmonella enterica/inmunología , Ubiquitina/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/inmunología , Proteínas/metabolismo , Interferencia de ARN , Infecciones por Salmonella/inmunología , Ubiquitina/metabolismo , Ubiquitinación , ARNt Metiltransferasas
13.
EMBO J ; 35(16): 1779-92, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27370208

RESUMEN

Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Citosol/microbiología , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Salmonella typhimurium/inmunología , Animales , Humanos , Ratones , Proteínas de Unión a Fosfato
14.
Mol Cell ; 48(3): 329-42, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23022382

RESUMEN

Autophagy protects cellular homeostasis by capturing cytosolic components and invading pathogens for lysosomal degradation. Autophagy receptors target cargo to autophagy by binding ATG8 on autophagosomal membranes. The expansion of the ATG8 family in higher eukaryotes suggests that specific interactions with autophagy receptors facilitate differential cargo handling. However, selective interactors of ATG8 orthologs are unknown. Here we show that the selectivity of the autophagy receptor NDP52 for LC3C is crucial for innate immunity since cells lacking either protein cannot protect their cytoplasm against Salmonella. LC3C is required for antibacterial autophagy because in its absence the remaining ATG8 orthologs do not support efficient antibacterial autophagy. Structural analysis revealed that the selectivity of NDP52 for LC3C is conferred by a noncanonical LIR, in which lack of an aromatic residue is balanced by LC3C-specific interactions. Our report illustrates that specificity in the interaction between autophagy receptors and autophagy machinery is of functional importance to execute selective autophagy.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Salmonella/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Western Blotting , Cristalografía por Rayos X , Citoplasma/metabolismo , Citoplasma/microbiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Salmonella/clasificación , Salmonella typhimurium/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
15.
J Biol Chem ; 293(7): 2438-2451, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282296

RESUMEN

Assembled tau can transfer between cells and seed the aggregation of soluble tau. This process is thought to underlie the amplification and propagation of tau inclusions throughout the brain in neurodegenerative diseases, including Alzheimer's disease. An understanding of the mechanisms involved may provide strategies for limiting assembled tau propagation. Here, we sought to determine how assembled tau seeds gain access to the cytosol and whether this access triggers cellular defenses. We show that tau assemblies enter cells through clathrin-independent endocytosis and escape from damaged endomembranes into the cytosol, where they seed the aggregation of soluble tau. We also found that the danger receptor galectin-8 detects damaged endomembranes and activates autophagy through recruitment of the cargo receptor nuclear dot protein 52 (NDP52). Inhibition of galectin-8- and NDP52-dependent autophagy increased seeded tau aggregation, indicating that autophagy triggered by damaged endomembranes during the entry of assembled tau seeds protects against tau aggregation, in a manner similar to cellular defenses against cytosol-dwelling microorganisms. A second autophagy cargo receptor, p62, then targeted seeded tau aggregates. Our results reveal that by monitoring endomembrane integrity, cells reduce entry of tau seeds into the cytosol and thereby prevent seeded aggregation. The mechanisms described here may help inform the development of therapies aimed at inhibiting the propagation of protein assemblies in neurodegenerative diseases.


Asunto(s)
Autofagia , Galectinas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Línea Celular , Citosol/metabolismo , Galectinas/genética , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Agregado de Proteínas , Proteínas tau/genética
16.
Nature ; 482(7385): 414-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246324

RESUMEN

Autophagy defends the mammalian cytosol against bacterial infection. Efficient pathogen engulfment is mediated by cargo-selecting autophagy adaptors that rely on unidentified pattern-recognition or danger receptors to label invading pathogens as autophagy cargo, typically by polyubiquitin coating. Here we show in human cells that galectin 8 (also known as LGALS8), a cytosolic lectin, is a danger receptor that restricts Salmonella proliferation. Galectin 8 monitors endosomal and lysosomal integrity and detects bacterial invasion by binding host glycans exposed on damaged Salmonella-containing vacuoles. By recruiting NDP52 (also known as CALCOCO2), galectin 8 activates antibacterial autophagy. Galectin-8-dependent recruitment of NDP52 to Salmonella-containing vesicles is transient and followed by ubiquitin-dependent NDP52 recruitment. Because galectin 8 also detects sterile damage to endosomes or lysosomes, as well as invasion by Listeria or Shigella, we suggest that galectin 8 serves as a versatile receptor for vesicle-damaging pathogens. Our results illustrate how cells deploy the danger receptor galectin 8 to combat infection by monitoring endosomal and lysosomal integrity on the basis of the specific lack of complex carbohydrates in the cytosol.


Asunto(s)
Autofagia , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/patología , Galectinas/metabolismo , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/fisiología , Proliferación Celular , Citoplasma/metabolismo , Citoplasma/microbiología , Vesículas Citoplasmáticas/microbiología , Endosomas/metabolismo , Endosomas/microbiología , Endosomas/patología , Células HeLa , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/patología , Proteínas Nucleares/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/citología
17.
Immunity ; 28(3): 402-13, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18328743

RESUMEN

The interaction of T cells with dendritic cells (DCs) determines whether an immune response is launched or not. Recognition of antigen leads to formation of immunological synapses at the interface between the cells. The length of interaction is likely to determine the functional outcome, because it limits the number of MHC class II-peptide complexes that can be recruited into the synapse. Here, we show that regulatory T (Treg) cells and naive helper T (Th) cells interact differently with DCs in the absence of proinflammatory stimuli. Although differences in T cell receptor repertoire might contribute, Foxp3-induced phenotypic differences play a major role. We found that Neuropilin-1 (Nrp-1), which is expressed by most Treg cells but not naive Th cells, promoted prolonged interactions with immature DCs (iDCs), resulting in higher sensitivity to limiting amounts of antigen. This is likely to give Treg cells an advantage over naive Th cells, with the same specificity leading to a "default" suppression of immune responses in the absence of "danger signals."


Asunto(s)
Presentación de Antígeno/inmunología , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Neuropilina-1/biosíntesis , Linfocitos T Reguladores/inmunología , Animales , Células Dendríticas/metabolismo , Citometría de Flujo , Antígenos de Histocompatibilidad Clase II , Inmunohistoquímica , Ratones , Receptores de Antígenos de Linfocitos T , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/metabolismo , Transducción Genética
18.
Trends Immunol ; 33(10): 475-87, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22796170

RESUMEN

Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo receptors, autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for major histocompatibility complex (MHC) presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example, upon phagosomal damage, whereas pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy.


Asunto(s)
Inmunidad Adaptativa , Autofagia , Animales , Supervivencia Celular , Humanos , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/microbiología
19.
PLoS Pathog ; 7(9): e1002247, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931555

RESUMEN

Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-ß (IFN-ß) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-ß expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-ß promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Virus Vaccinia/genética , Proteínas Virales/genética , Regulación Viral de la Expresión Génica , Genes Reguladores , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Evasión Inmune , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/genética , Interferón beta/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Sistemas de Lectura Abierta , Fosforilación , Plásmidos , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Transcripción Genética , Virus Vaccinia/metabolismo , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Replicación Viral
20.
Proc Natl Acad Sci U S A ; 107(15): 6970-5, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20351288

RESUMEN

The envelope glycoprotein of vesicular stomatitis virus (VSV-G) enables viral entry into hosts as distant as insects and vertebrates. Because of its ability to support infection of most, if not all, human cell types VSV-G is used in viral vectors for gene therapy. However, neither the receptor nor any specific host factor for VSV-G has been identified. Here we demonstrate that infection with VSV and innate immunity via Toll-like receptors (TLRs) require a shared component, the endoplasmic reticulum chaperone gp96. Cells without gp96 or with catalytically inactive gp96 do not bind VSV-G. The ubiquitous expression of gp96 is therefore essential for the remarkably broad tropism of VSV-G. Cells deficient in gp96 also lack functional TLRs, which suggests that pathogen-driven pressure for TLR-mediated immunity maintains the broad host range of VSV-G by positively selecting for the ubiquitous expression of gp96.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Islas de CpG , Herpesvirus Humano 1/metabolismo , Humanos , Inmunidad Innata , Glicoproteínas de Membrana/química , Chaperonas Moleculares/química , Mutagénesis , Retroviridae/metabolismo , Receptores Toll-Like/metabolismo , Transferrina/química , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA