Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Transl Med ; 15(706): eabq0476, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37494469

RESUMEN

T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Linfocitos T/patología , Enfermedad Injerto contra Huésped/patología , Receptores de Antígenos de Linfocitos T
2.
Blood Adv ; 6(5): 1547-1558, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35100339

RESUMEN

Posttransplant vaccination targeting residual disease is an immunotherapeutic strategy to improve antigen-specific immune responses and prolong disease-free survival after autologous stem cell transplantation (ASCT) for multiple myeloma (MM). We conducted a phase 1 vaccine trial to determine the safety, toxicity, and immunogenicity of autologous Langerhans-type dendritic cells (LCs) electroporated with CT7, MAGE-A3, and Wilms tumor 1 (WT1) messenger RNA (mRNA), after ASCT for MM. Ten patients received a priming immunization plus 2 boosters at 12, 30, and 90 days, respectively, after ASCT. Vaccines contained 9 × 106 mRNA-electroporated LCs. Ten additional patients did not receive LC vaccines but otherwise underwent identical ASCT and supportive care. At 3 months after ASCT, all patients started lenalidomide maintenance therapy. Vaccinated patients developed mild local delayed-type hypersensitivity reactions after booster vaccines, but no toxicities exceeded grade 1. At 1 and 3 months after vaccines, antigen-specific CD4 and CD8 T cells increased secretion of proinflammatory cytokines (interferon-γ, interleukin-2, and tumor necrosis factor-α) above prevaccine levels, and also upregulated the cytotoxicity marker CD107a. CD4 and CD8 T-cell repertoire analysis showed a trend for increased clonal expansion in the vaccine cohort, which was more pronounced in the CD4 compartment. Although not powered to assess clinical efficacy, treatment responses favored the vaccine arm. Triple antigen-bearing mRNA-electroporated autologous LC vaccination initiated at engraftment after ASCT, in conjunction with standard lenalidomide maintenance therapy for MM, is safe and induces antigen-specific immune reactivity. This trial was registered at www.clinicaltrials.gov as #NCT01995708.


Asunto(s)
Vacunas contra el Cáncer , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Antígenos de Neoplasias , Autoinjertos , Vacunas contra el Cáncer/efectos adversos , Células Dendríticas , Humanos , Lenalidomida , ARN Mensajero/genética , Trasplante Autólogo
3.
PLoS One ; 9(6): e98584, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24915415

RESUMEN

The Drosophila melanogaster 91-R and 91-C strains are of common origin, however, 91-R has been intensely selected for dichlorodiphenyltrichloroethane (DDT) resistance over six decades while 91-C has been maintained as the non-selected control strain. These fly strains represent a unique genetic resource to understand the accumulation and fixation of mutations under laboratory conditions over decades of pesticide selection. Considerable research has been done to investigate the differential expression of genes associated with the highly DDT resistant strain 91-R, however, with the advent of whole genome sequencing we can now begin to develop an in depth understanding of the genomic changes associated with this intense decades-long xenobiotic selection pressure. Here we present the first whole genome sequencing analysis of the 91-R and 91-C fly strains to identify genome-wide structural changes within the open reading frames. Between-strain changes in allele frequencies revealed a higher percent of new alleles going to fixation for the 91-R strain, as compared to 91-C (P<0.0001). These results suggest that resistance to DDT in the 91-R laboratory strain could potentially be due primarily to new mutations, as well as being polygenic rather than the result of a few major mutations, two hypotheses that remain to be tested.


Asunto(s)
DDT/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Resistencia a Medicamentos/genética , Estudio de Asociación del Genoma Completo , Sistemas de Lectura Abierta , Alelos , Sustitución de Aminoácidos , Animales , Mapeo Cromosómico , Cromosomas de Insectos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Genoma de los Insectos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Mutación , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA