Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metab Brain Dis ; 32(2): 529-538, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28012068

RESUMEN

Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.


Asunto(s)
Amoníaco/metabolismo , Amoníaco/toxicidad , Animales , Encéfalo/patología , Química Encefálica , Encefalopatía Hepática , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patología , Músculo Esquelético/patología
2.
Proc Natl Acad Sci U S A ; 109(46): 18974-9, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112168

RESUMEN

Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP(3)R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs.


Asunto(s)
Anestesia General , Anestésicos/farmacología , Astrocitos/metabolismo , Señalización del Calcio/efectos de los fármacos , Sinapsis/metabolismo , Vigilia/efectos de los fármacos , Animales , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados
3.
Proc Natl Acad Sci U S A ; 108(2): 846-51, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187412

RESUMEN

Aquaporin-4 (AQP4) is a primary influx route for water during brain edema formation. Here, we provide evidence that brain swelling triggers Ca(2+) signaling in astrocytes and that deletion of the Aqp4 gene markedly interferes with these events. Using in vivo two-photon imaging, we show that hypoosmotic stress (20% reduction in osmolarity) initiates astrocytic Ca(2+) spikes and that deletion of Aqp4 reduces these signals. The Ca(2+) signals are partly dependent on activation of P2 purinergic receptors, which was judged from the effects of appropriate antagonists applied to cortical slices. Supporting the involvement of purinergic signaling, osmotic stress was found to induce ATP release from cultured astrocytes in an AQP4-dependent manner. Our results suggest that AQP4 not only serves as an influx route for water but also is critical for initiating downstream signaling events that may affect and potentially exacerbate the pathological outcome in clinical conditions associated with brain edema.


Asunto(s)
Acuaporina 4/química , Acuaporina 4/genética , Astrocitos/metabolismo , Edema Encefálico/metabolismo , Calcio/metabolismo , Adenosina Trifosfato/química , Animales , Encéfalo/patología , Edema/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ósmosis , Fotones , Transducción de Señal , Agua/química
5.
Trends Neurosci ; 37(11): 620-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25236348

RESUMEN

Edema formation frequently complicates brain infarction, tumors, and trauma. Despite the significant mortality of this condition, current treatment options are often ineffective or incompletely understood. Recent studies have revealed the existence of a brain-wide paravascular pathway for cerebrospinal (CSF) and interstitial fluid (ISF) exchange. The current review critically examines the contribution of this 'glymphatic' system to the main types of brain edema. We propose that in cytotoxic edema, energy depletion enhances glymphatic CSF influx, whilst suppressing ISF efflux. We also argue that paravascular inflammation or 'paravasculitis' plays a critical role in vasogenic edema. Finally, recent advances in diagnostic imaging of glymphatic function may hold the key to defining the edema profile of individual patients, and thus enable more targeted therapy.


Asunto(s)
Astrocitos/patología , Edema Encefálico/patología , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Líquido Extracelular/metabolismo , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/patología , Edema Encefálico/metabolismo , Humanos
6.
J Cereb Blood Flow Metab ; 33(7): 996-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23611872

RESUMEN

Using in vivo two-photon imaging, we show that mice deficient in aquaporin-4 (AQP4) display increased fluorescence of nicotinamide adenine dinucleotide (NADH) when subjected to cortical spreading depression. The increased NADH signal, a proxy of tissue hypoxia, was restricted to microwatershed areas remote from the vasculature. Aqp4 deletion had no effects on the hyperemia response, but slowed [K(+)]o recovery. These observations suggest that K(+) uptake is suppressed in Aqp4(-/-) mice as a consequence of decreased oxygen delivery to tissue located furthest away from the vascular source of oxygen, although increased oxygen consumption may also contribute to our observations.


Asunto(s)
Acuaporina 4/fisiología , Depresión de Propagación Cortical/fisiología , Hipoxia Encefálica/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , NAD/metabolismo , Oxígeno/metabolismo , Animales , Acuaporina 4/genética , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/genética , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , NAD/química , Consumo de Oxígeno/fisiología , Cloruro de Potasio/metabolismo , Cloruro de Potasio/farmacología
7.
Sci Rep ; 3: 2582, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24002448

RESUMEN

In the brain, a paravascular space exists between vascular cells and astroglial end-foot processes, creating a continuous sheath surrounding blood vessels. Using in vivo two-photon imaging we demonstrate that the paravascular circulation facilitates selective transport of small lipophilic molecules, rapid interstitial fluid movement and widespread glial calcium signaling. Depressurizing the paravascular system leads to unselective lipid diffusion, intracellular lipid accumulation and pathological signaling in astrocytes. As the central nervous system is devoid of lymphatic vessels, the paravascular space may serve as a lymphatic equivalent that represents a separate highway for the transport of lipids and signaling molecules.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Metabolismo de los Lípidos , Microcirculación , Transducción de Señal , Animales , Transporte Biológico , Calcio/metabolismo , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Imagen Molecular/métodos
8.
Nat Med ; 19(12): 1643-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24240184

RESUMEN

Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1.


Asunto(s)
Amoníaco/farmacología , Astrocitos/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Potasio/metabolismo , Convulsiones/inducido químicamente , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Células Cultivadas , Evaluación Preclínica de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Ratas , Ratas Wistar , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA