Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30333168

RESUMEN

Type I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of the Flaviviridae family, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCE Viruses of the Flaviviridae family cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of the Flaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.


Asunto(s)
Ciclofilina A/farmacología , Hepacivirus/fisiología , Interferones/farmacología , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Ciclosporina/farmacología , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Hepacivirus/efectos de los fármacos , Humanos , Proteínas de Resistencia a Mixovirus/genética , Unión Proteica/efectos de los fármacos , Células Vero
2.
Cell Stem Cell ; 31(3): 292-311, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38366587

RESUMEN

Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Diferenciación Celular
3.
Toxicol Sci ; 195(1): 61-70, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37462734

RESUMEN

Cardiovascular toxicity is an important cause of drug failures in the later stages of drug development, early clinical safety assessment, and even postmarket withdrawals. Early-stage in vitro assessment of potential cardiovascular liabilities in the pharmaceutical industry involves assessment of interactions with cardiac ion channels, as well as induced pluripotent stem cell-derived cardiomyocyte-based functional assays, such as calcium flux and multielectrode-array assays. These methods are appropriate for the identification of acute functional cardiotoxicity but structural cardiotoxicity, which manifests effects after chronic exposure, is often only captured in vivo. CardioMotion is a novel, label-free, high throughput, in vitro assay and analysis pipeline which records and assesses the spontaneous beating of cardiomyocytes and identifies compounds which impact beating. This is achieved through the acquisition of brightfield images at a high framerate, combined with an optical flow-based python analysis pipeline which transforms the images into waveform data which are then parameterized. Validation of this assay with a large dataset showed that cardioactive compounds with diverse known direct functional and structural mechanisms-of-action on cardiomyocytes are identified (sensitivity = 72.9%), importantly, known structural cardiotoxins also disrupt cardiomyocyte beating (sensitivity = 86%) in this method. Furthermore, the CardioMotion method presents a high specificity of 82.5%.


Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Humanos , Cardiotoxicidad/etiología , Células Cultivadas , Miocitos Cardíacos
4.
Sci Rep ; 13(1): 12137, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495732

RESUMEN

Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-ß) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-ß receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-ß inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-ß receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-ß signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miofibroblastos , Adulto , Humanos , Ratones , Animales , Miofibroblastos/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Fibroblastos/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Actinas/metabolismo , Factor de Crecimiento Transformador beta1/genética
5.
Methods Mol Biol ; 2441: 339-348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099750

RESUMEN

Various protocols have been developed to generate endothelial cells for disease modeling, angiogenesis, vascular regeneration, and drug screening. These protocols often require cell sorting, as most differentiation strategies result in a heterogenous population of endothelial cells (ECs). For any given model system, one important consideration is choosing the appropriate EC subtype, as different EC populations have unique molecular signatures.Herein, we describe a protocol for cardiac EC differentiation and a protocol for endothelial cell characterization. This protocol is aimed at investigating differentiation efficiency by measuring endothelial lineage markers, CD31, VE-Cadherin, and VEGFR2 by flow cytometry. Collectively, these protocols comprise the tools required to generate cardiac ECs efficiently and reproducibly from different hPSC lines without the need for cell sorting. Our protocol adds to the panel of hPSCs for cardiac EC differentiation and addresses reproducibility concerns of hPSC-based experiments. The approaches described are also applicable for complex model generation where multiple cardiovascular cell types are involved and may assist in optimizing differentiations for different cell lineages, including cardiomyocytes, cardiac endothelial cells, and cardiac fibroblasts.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/metabolismo , Humanos , Miocitos Cardíacos , Reproducibilidad de los Resultados
6.
Viruses ; 10(1)2018 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-29342871

RESUMEN

Viruses exploit the host and induce drastic metabolic changes to ensure an optimal environment for replication and the production of viral progenies. In response, the host has developed diverse countermeasures to sense and limit these alterations to combat viral infection. One such host mechanism is through interferon signaling. Interferons are cytokines that enhances the transcription of hundreds of interferon-stimulated genes (ISGs) whose products are key players in the innate immune response to viral infection. In addition to their direct targeting of viral components, interferons and ISGs exert profound effects on cellular metabolism. Recent studies have started to illuminate on the specific role of interferon in rewiring cellular metabolism to activate immune cells and limit viral infection. This review reflects on our current understanding of the complex networking that occurs between the virus and host at the interface of cellular metabolism, with a focus on the ISGs in particular, cholesterol-25-hydroxylase (CH25H), spermidine/spermine acetyltransferase 1 (SAT1), indoleamine-2,3-dioxygenase (IDO1) and sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), which were recently discovered to modulate specific metabolic events and consequently deter viral infection.


Asunto(s)
Inmunidad Innata , Interferones/inmunología , Redes y Vías Metabólicas/inmunología , Transducción de Señal/inmunología , Virosis/inmunología , Acetiltransferasas/inmunología , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Macaca mulatta , Ratones , Proteína 1 que Contiene Dominios SAM y HD/inmunología , Esteroide Hidroxilasas/inmunología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA