Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharmacol ; 103(4): 211-220, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720643

RESUMEN

The androgen receptor (AR) is a crucial coactivator of ELK1 for prostate cancer (PCa) growth, associating with ELK1 through two peptide segments (358-457 and 514-557) within the amino-terminal domain (NTD) of AR. The small-molecule antagonist 5-hydroxy-2-(3-hydroxyphenyl)chromen-4-one (KCI807) binds to AR, blocking ELK1 binding and inhibiting PCa growth. We investigated the mode of interaction of KCI807 with AR using systematic mutagenesis coupled with ELK1 coactivation assays, testing polypeptide binding and Raman spectroscopy. In full-length AR, deletion of neither ELK1 binding segment affected sensitivity of residual ELK1 coactivation to KCI807. Although the NTD is sufficient for association of AR with ELK1, interaction of the isolated NTD with ELK1 was insensitive to KCI807. In contrast, coactivation of ELK1 by the AR-V7 splice variant, comprising the NTD and the DNA binding domain (DBD), was sensitive to KCI807. Deletions and point mutations within DBD segment 558-595, adjacent to the NTD, interfered with coactivation of ELK1, and residual ELK1 coactivation by the mutants was insensitive to KCI807. In a glutathione S-transferase pull-down assay, KCI807 inhibited ELK1 binding to an AR polypeptide that included the two ELK1 binding segments and the DBD but did not affect ELK1 binding to a similar AR segment that lacked the sequence downstream of residue 566. Raman spectroscopy detected KCI807-induced conformational change in the DBD. The data point to a putative KCI807 binding pocket within the crystal structure of the DBD and indicate that either mutations or binding of KCI807 at this site will induce conformational changes that disrupt ELK1 binding to the NTD. SIGNIFICANCE STATEMENT: The small-molecule antagonist KCI807 disrupts association of the androgen receptor (AR) with ELK1, serving as a prototype for the development of small molecules for a novel type of therapeutic intervention in drug-resistant prostate cancer. This study provides basic information needed for rational KCI807-based drug design by identifying a putative binding pocket in the DNA binding domain of AR through which KCI807 modulates the amino-terminal domain to inhibit ELK1 binding.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Dominios Proteicos , Péptidos/uso terapéutico , Neoplasias de la Próstata/metabolismo , ADN , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/uso terapéutico
2.
Cancer Immunol Immunother ; 72(5): 1273-1284, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36434273

RESUMEN

There is a need to improve response rates of immunotherapies in lung adenocarcinoma (AC). Extended (7-14 days) treatment of high glucocorticoid receptor (GR) expressing lung AC cells with dexamethasone (Dex) induces an irreversible senescence phenotype through chronic induction of p27. As the senescence-associated secretory phenotype (SASP) may have either tumor supporting or antitumor immunomodulatory effects, it was interest to examine the effects of Dex-induced senescence of lung AC cells on immune cells. Dex-induced senescence resulted in sustained production of CCL2, CCL4, CXCL1 and CXCL2, both in vitro and in vivo. After Dex withdrawal, secretion of these chemokines by the senescent cells attracted peripheral blood monocytes, T-cells, and NK cells. Following treatment with Dex-induced SASP protein(s), the peripheral blood lymphocytes exhibited higher cell count and tumor cytolytic activity along with enhanced Ki67 and perforin expression in T and NK cells. This cytolytic activity was partially attributed to NKG2D, which was upregulated in NK cells by SASP while its ligand MICA/B was upregulated in the senescent cells. Enhanced infiltrations of T and NK cells were observed in human lung AC xenografts in humanized NSG mice, following treatment with Dex. The findings substantiate the idea that induction of irreversible senescence in high-GR expressing subpopulations of lung AC tumors using Dex pretreatment enhances tumor immune infiltration and may subsequently improve the clinical outcome of current immunotherapies.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Animales , Ratones , Dexametasona/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Células Asesinas Naturales/metabolismo , Senescencia Celular/genética
3.
Protein Expr Purif ; 203: 106216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528218

RESUMEN

Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcription factor ELK-1 serves as a paradigm for cellular responses to mitogens and can synergise with androgen receptor to promote prostate cancer progression, although in vitro protein function analyses to date have largely overlooked its complex PTM landscapes. We expressed and purified human ELK-1 using mammalian (HEK293T), insect (Sf9) and bacterial (E. coli) systems in parallel and compared PTMs imparted upon purified proteins, along with their performance in DNA and protein interaction assays. Phosphorylation of ELK-1 within its transactivation domain, known to promote DNA binding, was most apparent in protein isolated from human cells and accordingly conferred the strongest DNA binding in vitro, while protein expressed in insect cells bound most efficiently to the androgen receptor. We observed lysine acetylation, a hitherto unreported PTM of ELK-1, which appeared highest in insect cell-derived ELK-1 but was also present in HEK293T-derived ELK-1. Acetylation of ELK-1 was enhanced in HEK293T cells following starvation and mitogen stimulation, and modified lysines showed overlap with previously identified regulatory SUMOylation and ubiquitination sites. Our data demonstrate that the choice of recombinant expression system can be tailored to suit biochemical application rather than to maximise soluble protein production and suggest the potential for crosstalk and antagonism between different PTMs of ELK-1.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína Elk-1 con Dominio ets , Animales , Humanos , ADN/metabolismo , Escherichia coli/metabolismo , Células HEK293 , Mamíferos , Fosforilación , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Proteína Elk-1 con Dominio ets/biosíntesis , Proteína Elk-1 con Dominio ets/metabolismo , Células Sf9/metabolismo
4.
Biochem J ; 479(14): 1519-1531, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35781489

RESUMEN

Prostate cancer (PCa) growth requires tethering of the androgen receptor (AR) to chromatin by the ETS domain transcription factor ELK1 to coactivate critical cell proliferation genes. Disruption of the ELK1-AR complex is a validated potential means of therapeutic intervention in PCa. AR associates with ELK1 by coopting its two ERK docking sites, through the amino-terminal domain (A/B domain) of AR. Using a mammalian two-hybrid assay, we have now functionally mapped amino acids within the peptide segments 358-457 and 514-557 in the A/B domain as required for association with ELK1. The mapping data were validated by GST (glutathione S-transferase)-pulldown and BRET (bioluminescence resonance energy transfer) assays. Comparison of the relative contributions of the interacting motifs/segments in ELK1 and AR to coactivation of ELK1 by AR suggested a parallel mode of binding of AR and ELK1 polypeptides. Growth of PCa cells was partially inhibited by deletion of the upstream segment in AR and nearly fully inhibited by deletion of the downstream segment. Our studies have identified two peptide segments in AR that mediate the functional association of AR with its two docking sites in ELK1. Identification of the ELK1 recognition sites in AR should enable further structural studies of the ELK1-AR interaction and rational design of small molecule drugs to disrupt this interaction.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Mamíferos/metabolismo , Péptidos/genética , Péptidos/uso terapéutico , Neoplasias de la Próstata/genética , Receptores Androgénicos/química , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/uso terapéutico
5.
Prostate ; 80(2): 198-208, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794091

RESUMEN

BACKGROUND: Both hormone-sensitive and castration- and enzalutamide-resistant prostate cancers (PCa) depend on the ternary complex factor (TCF) protein ELK1 to serve as a tethering protein for the androgen receptor (AR) to activate a critical set of growth genes. The two sites in ELK1 required for AR binding are conserved in other members of the TCF subfamily, ELK3 and ELK4. Here we examine the potential utility of the three proteins as prognosticators of disease recurrence in PCa. METHODS: Transcriptional activity assays; Retrospective analysis of PCa recurrence using data on 501 patients in The Cancer Genome Atlas (TCGA) database; Unpaired Wilcoxon rank-sum test and multiple comparison correction using the Holm's method; Spearman's correlations; Kaplan-Meier methods; Univariable and multivariable Cox regression analyses; LASSO-based penalized Cox regression models; Time-dependent area under the receiver operating characteristic (ROC) curve. RESULTS: ELK4 but not ELK3 was coactivated by AR similar to ELK1. Tumor expression of neither ELK3 nor ELK4 was associated with disease-free survival (DFS). ELK1 was associated with higher clinical T-stage, pathology T-stage, Gleason score, prognostic grade, and positive lymph node status. ELK1 was a negative prognosticator of DFS, independent of ELK3, ELK4, clinical T-stage, pathology T-stage, prognostic grade, lymph node status, age, and race. Inclusion of ELK1 increased the abilities of the Oncotype DX and Prolaris gene panels to predict disease recurrence, correctly predicting disease recurrence in a unique subset of patients. CONCLUSIONS: ELK1 is a strong, independent prognosticator of disease recurrence in PCa, underscoring its unique role in PCa growth. Inclusion of ELK1 may enhance the utility of currently used prognosticators for clinical decision making in prostate cancer.


Asunto(s)
Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Proteína Elk-1 con Dominio ets/genética , Adulto , Anciano , Análisis por Conglomerados , Supervivencia sin Enfermedad , Células HeLa , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-ets/genética , Receptores Androgénicos/genética , Estudios Retrospectivos , Activación Transcripcional , Proteína Elk-4 del Dominio ets/genética
6.
Breast Cancer Res Treat ; 181(1): 145-154, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32236827

RESUMEN

BACKGROUND: African American women (AAW) die more frequently from estrogen receptor (ER) positive breast cancer than European American women (EAW). We investigated the relationship between race, percent ER staining, treatment, and clinical outcomes. METHODS: Percent ER staining (weakly ER+: 1-10%, moderately ER+: 11-50%, strongly ER+: > 50%) was abstracted from pathology reports for 1573 women with ER+/HER2- invasive breast cancer treated at a single cancer center in Detroit, MI from 2010 to 2017. Clinical outcomes and tumor characteristics were obtained from the Metropolitan Detroit Cancer Surveillance System. Associations of ER levels with demographic and clinical characteristics were evaluated using logistic regression. Overall and breast cancer-specific (BCS) survival were evaluated using Cox proportional hazards models. RESULTS: AAW were more likely to have tumors with lower ER staining levels than EAW (weakly ER+: Odds ratio (OR) 2.19, p = 0.019; moderately ER+: OR 2.80, p = 0.005). Women with weakly compared to strongly ER+ tumors were less likely to receive endocrine therapy (ET) regardless of race (OR 0.79, p < 0.001). Mortality was predicted by both AA race (Overall hazard ratio (HR) = 1.72, p < 0.001; BCS HR 1.45, p = 0.08) and low (1-50%) ER (Overall HR 1.57, p = 0.083; BCS HR 2.11, p = 0.017) adjusting for clinic-pathologic characteristics. ET was associated with improved BCS survival in all women (1-50%: HR 0.11, p < 0.001; > 50%: HR 0.24, p < 0.001). CONCLUSION: The biology of ER+/HER2- tumors varies by race, although this does not appear to account for racial differences in survival. Although ET substantially reduces mortality among women with weakly ER+ tumors, these women are less likely to be treated with ET and have poorer outcomes.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Neoplasias de la Mama/mortalidad , Carcinoma Ductal de Mama/mortalidad , Carcinoma Lobular/mortalidad , Mastectomía/mortalidad , Receptores de Estrógenos/metabolismo , Población Blanca/estadística & datos numéricos , Adulto , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/etnología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Carcinoma Ductal de Mama/etnología , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/terapia , Carcinoma Lobular/etnología , Carcinoma Lobular/patología , Carcinoma Lobular/terapia , Terapia Combinada , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Factores Socioeconómicos , Tasa de Supervivencia , Adulto Joven
7.
BMC Cancer ; 20(1): 512, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493230

RESUMEN

BACKGROUND: Luminal breast cancer (L-BCa) comprises the majority of incurable, distally metastatic breast cancer cases. Estrogen supports growth of L-BCa cells but suppresses invasiveness. Estrogen also induces the progesterone receptor (PR). Invasiveness and metastasis of L-BCa cells is supported by the short PR isoform (PR-A), in response to the range of pre- and post-menopausal plasma hormone levels, by counteracting the effects of estrogen via micro RNA-mediated cross-talk with the estrogen receptor (ER). PR-B directly supports L-BCa invasion and metastasis and also inhibits tumor growth, both only at high progesterone levels. As public datasets on L-BCa tumors cannot distinguish PR-A, this study was designed to seek clinical evidence for the role of PR-A in metastasis in comparison with PR-B and ER. METHODS: Measurement of tumor PR-A, PR-B and ER mRNA expression in 125 treatment-naive primary L-BCa patients with differential node involvement and analysis using linear mixed effects models. Transcriptional activity assays of PR-A and PR-B. RESULTS: Lymph node involvement was strongly associated with PR-A expression (median, 3-fold higher vs. node-negative), independent of age, pathologic type, tumor grade, HER2 and PR-B. PR-B and ER correlated weakly with PR-A, but whereas PR-B and the PR-A/PR-B ratio were not significantly associated with node involvement, ER weakly negatively correlated with node positivity. PR-A was hypersensitive to mifepristone compared with PR-B. CONCLUSIONS: Taken together with previous mechanistic studies, the findings provide clinical evidence in support of the role of PR-A in L-BCa metastasis. They also suggest the possibility of developing selective PR-A modulators for future interventions in appropriate clinical situations.


Asunto(s)
Neoplasias de la Mama/patología , Metástasis Linfática/patología , Receptores de Progesterona/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Mama/patología , Línea Celular Tumoral , Estrógenos/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Ganglios Linfáticos/patología , Persona de Mediana Edad , Invasividad Neoplásica/patología , Estudios Prospectivos , Isoformas de Proteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Estrógenos/análisis , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/análisis
8.
J Biol Chem ; 293(4): 1163-1177, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29162724

RESUMEN

Distal metastasis of luminal breast cancer is frequent and incurable, yet the metastasis mechanisms are poorly understood. Estrogen, even at postmenopausal concentrations, suppresses invasiveness of luminal breast cancer cells through the estrogen receptor (ER). Invasive tumors overexpress the short progesterone receptor A (PR-A) isoform. Even at postmenopausal concentrations, progesterone activates PR-A, inducing invasiveness by counteracting estrogen's effects, particularly when cells are hypersensitized to progesterone by PR-A overexpression. To interrogate the role of this cross-talk in metastasis, we investigated selective cross-talk mechanisms of PR-A with ER. We developed a quantitative PCR-based lymph node infiltration assay to address the slowness of metastasis of tumor xenografts. We found that 15 microRNAs (miRNAs) are regulated by progesterone via PR-A, but not the longer PR-B isoform, with increased progesterone sensitivity when PR-A was overexpressed. Two of these miRNAs whose induction (miR-92a-3p) or repression (miR-26b-5p) by estrogen was suppressed by progesterone plus PR-A were critical for the PR-A-ER cross-talk causing a gene-regulatory pattern of invasiveness and metastasis and complete rescue of invasiveness in vitro Constitutive expression of miR-92a-3p or inhibition of miR-26b-5p profoundly suppressed metastasis. Finally, in primary breast tumors, PR-A expression was correlated negatively with miR-92a-3p expression and positively with miR-26b-5p expression. Therefore, hormonal cross-talk of PR-A with ER is probably a fundamental mechanism that enables metastasis of luminal breast cancer. Moreover, miRNA biomarkers of hyperactive PR-A may help predict metastatic potential of luminal breast tumors. Further, miR-92a-3p and miR-26b-5p may reveal target pathways for selective intervention to suppress hormone-regulated metastasis, both pre- and postmenopause.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos/farmacología , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Receptores de Progesterona/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Receptores de Progesterona/genética
9.
Breast Cancer Res Treat ; 172(3): 551-560, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30155754

RESUMEN

PURPOSE: According to the American Cancer Society, 1 in 8 women in the U.S. will develop breast cancer, with triple-negative breast cancer (TNBC) comprising 15-20% of all breast cancer cases. TNBC is an aggressive subtype due to its high metastatic potential and lack of targeted therapy. Recently, folate receptor alpha (FRA) is found to be expressed on 80% of TNBC with high expression correlating with poor prognosis. In this study, we examined whether binding IgA Fc-folate molecules to FRA receptors on TNBC cells can elicit and induce neutrophils (PMNs), by binding their FcαR1 receptors, to destroy TNBC cells. METHODS: FRA was analyzed on TNBC cells and binding assays were performed using 3H-folate. Fc-folate was synthesized by linking Fc fragments of IgA via amine groups to folate. Binding specificity and antibody-dependent cellular cytotoxicity (ADCC) potential of Fc-folate to FcαR1 were confirmed by measuring PMN adhesion and myeloperoxidase (MPO) release in a cell-based ELISA. Fc-folate binding to FRA-expressing TNBC cells inducing PMNs to destroy these cells was determined using 51Cr-release and calcein-labeling assays. RESULTS: Our results demonstrate expression of FRA on TNBC cells at levels consistent with folate binding. Fc-folate binds with high affinity to FRA compared to whole IgA-folate and induces MPO release from PMN when bound to FcαR1. Fc-folate inhibited binding of 3H-folate to TNBC cells and induced significant cell lysis of TNBC cells when incubated in the presence of PMNs. CONCLUSION: These findings support the hypothesis that an IgA Fc-folate conjugate can destroy TNBC cells by eliciting PMN-mediated ADCC.


Asunto(s)
Receptor 1 de Folato/metabolismo , Ácido Fólico/farmacología , Neutrófilos/inmunología , Receptores Fc/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Femenino , Ácido Fólico/metabolismo , Humanos , Inmunoglobulina A/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología
10.
J Biol Chem ; 291(50): 25983-25998, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27793987

RESUMEN

The ETS domain transcription factor ELK1 is in a repressive association with growth genes and is transiently activated through phosphorylation by ERK1/2. In prostate cancer (PCa) cells the androgen receptor (AR) is recruited by ELK1, via its amino-terminal domain (A/B), as a transcriptional co-activator, without ELK1 hyper-phosphorylation. Here we elucidate the structural basis of the interaction of AR with ELK1. The ELK1 polypeptide motifs required for co-activation by AR versus those required for activation of ELK1 by ERK were systematically mapped using a mammalian two-hybrid system and confirmed using a co-immunoprecipitation assay. The mapping precisely identified the two ERK-docking sites in ELK1, the D-box and the DEF (docking site for ERK, FXFP) motif, as the essential motifs for its cooperation with AR(A/B) or WTAR. In contrast, the transactivation domain in ELK1 was only required for activation by ERK. ELK1-mediated transcriptional activity of AR(A/B) was optimal in the absence of ELK1 binding partners, ERK1/2 and serum-response factor. Purified ELK1 and AR bound with a dissociation constant of 1.9 × 10-8 m A purified mutant ELK1 in which the D-box and DEF motifs were disrupted did not bind AR. An ELK1 mutant with deletion of the D-box region had a dominant-negative effect on androgen-dependent growth of PCa cells that were insensitive to MEK inhibition. This novel mechanism in which a nuclear receptor impinges on a signaling pathway by co-opting protein kinase docking sites to constitutively activate growth genes could enable rational design of a new class of targeted drug interventions.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Células HeLa , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias de la Próstata/genética , Unión Proteica , Receptores Androgénicos/genética , Proteína Elk-1 con Dominio ets/genética
11.
Mol Pharmacol ; 90(3): 225-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27382012

RESUMEN

Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in enzalutamide-resistant PCa cells with weakened effects on nuclear HDACI targets.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Acetilación/efectos de los fármacos , Benzamidas , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Cromatina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Ligandos , Masculino , Modelos Biológicos , Peso Molecular , Nitrilos , Feniltiohidantoína/síntesis química , Feniltiohidantoína/química , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteolisis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Vorinostat
12.
Mol Pharmacol ; 89(4): 425-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26837243

RESUMEN

Pemetrexed (PMX) is a 5-substituted pyrrolo[2,3-d]pyrimidine antifolate used for therapy of nonsquamous nonsmall cell lung cancer (NS-NSCLC). PMX is transported by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). Unlike RFC, PCFT is active at acidic pH levels characterizing the tumor microenvironment. By real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, PCFT transcripts and proteins were detected in primary NS-NSCLC specimens. In six NS-NSCLC cell lines (A549, H1437, H460, H1299, H1650, and H2030), PCFT transcripts and proteins were detected by real-time RT-PCR and western blots, respectively. 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates related to PMX [compound 1 (C1) and compound 2 (C2), respectively] are selective substrates for PCFT over RFC. In the NS-NSCLC cell lines, both [(3)H]PMX and [(3)H]C2 were transported by PCFT. C1 and C2 inhibited proliferation of the NS-NSCLC cell lines; A549, H460, and H2030 cells were more sensitive to C1 than to PMX. C1 and C2 inhibited glycinamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis. When treated at pH 6.8, which favors PCFT uptake, C1 and C2 inhibited clonogenicity of H460 cells greater than PMX; PMX inhibited clonogenicity more than C1 or C2 at pH 7.2, which favors RFC transport over PCFT. Knockdown of PCFT in H460 cells resulted in decreased [(3)H]PMX and [(3)H]C2 transport and decreased growth inhibition by C1 and C2, and to a lesser extent by PMX. In vivo efficacy of C1 was seen toward H460 tumor xenografts in severe-combined immunodeficient mice. Our results suggest that 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates offer significant promise for treating NS-NSCLC by selective uptake by PCFT.


Asunto(s)
Antineoplásicos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Antagonistas del Ácido Fólico/metabolismo , Neoplasias Pulmonares/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Animales , Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Antagonistas del Ácido Fólico/administración & dosificación , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos ICR , Ratones SCID , Pirimidinas/administración & dosificación , Pirimidinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Biochem Biophys Res Commun ; 476(2): 69-74, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27179779

RESUMEN

It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors.


Asunto(s)
Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos/farmacología , Animales , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Ratones , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Regulación hacia Arriba
14.
Proc Natl Acad Sci U S A ; 110(38): 15180-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23934049

RESUMEN

Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.


Asunto(s)
Receptores de Folato Anclados a GPI/química , Antagonistas del Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Modelos Moleculares , Conformación Proteica , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Cristalización , Receptores de Folato Anclados a GPI/genética , Humanos , Estructura Molecular , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/genética
15.
Biochem Biophys Res Commun ; 457(3): 404-11, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582774

RESUMEN

Estrogen (E2) supports breast cancer cell growth but suppresses invasiveness and both actions are antagonized by anti-estrogens. As a consequence, anti-estrogen treatment may increase the invasive potential of estrogen receptor (ER)+ tumor cell sub-populations that are endocrine resistant due to HER2 amplification. Either transactivation or transrepression by E2/ER could lead to both up- and down-regulation of many genes. Inhibition of the transactivation function of ER is adequate to inhibit E2-dependent growth. However, the impact of inhibiting E2-dependent transactivation vs. transrepression by ER on regulation of invasiveness by E2 is less clear. Here we dissect the roles of ER-mediated transactivation and transrepression in the regulation of invasiveness of ER+/HER2+ breast cancer cells by E2. Knocking down the general ER co-activators CBP and p300 prevented activation by E2 of its classical target genes but did not interfere with the ability of E2 to repress its direct target genes known to support invasiveness and tumor progression; there was also no effect on invasiveness or the ability of E2 to regulate invasiveness. On the other hand, overexpression of a co-repressor binding site mutant of ER (L372R) prevented E2-dependent transrepression but not transactivation. The mutant ER abrogated the ability of E2 to suppress invasiveness. E2 can partially down-regulate HER2 but knocking down HER2 below E2-regulated levels did not affect invasiveness or the ability of E2 to regulate invasiveness, although it did inhibit growth. Therefore, in ER+/HER2+ cells, the E2-dependent transrepression by ER rather than its transactivation function is critical for regulation of invasiveness and this is independent of HER2 regulation by E2. The findings suggest that selective inhibitors of transactivation by ER may be more beneficial in reducing tumor progression than conventional anti-estrogens that also antagonize E2-dependent transrepression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Estradiol/metabolismo , Estradiol/farmacología , Moduladores de los Receptores de Estrógeno/farmacología , Femenino , Expresión Génica , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/fisiopatología , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/metabolismo , Activación Transcripcional
16.
J Biol Chem ; 288(16): 11047-65, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23426362

RESUMEN

The androgen receptor (AR) is essential for diverse aspects of prostate development and function. Molecular mechanisms by which prostate cancer (PC) cells redirect AR signaling to genes that primarily support growth are unclear. A systematic search for critical AR-tethering proteins led to ELK1, an ETS transcription factor of the ternary complex factor subfamily. Although genetically redundant, ELK1 was obligatory for AR-dependent growth and clonogenic survival in both hormone-dependent PC and castration-recurrent PC cells but not for AR-negative cell growth. AR required ELK1 to up-regulate a major subset of its target genes that was strongly and primarily enriched for cell growth functions. AR functioned as a coactivator of ELK1 by association through its A/B domain, bypassing the classical mechanism of ELK1 activation by phosphorylation and without inducing ternary complex target genes. The ELK1-AR synergy per se was ligand-independent, although it required ligand for nuclear localization of AR as targeting the AR A/B domain to the nucleus recapitulated the action of hormone; accordingly, Casodex was a poor antagonist of the synergy. ELK3, the closest substitute for ELK1 in structure/function and genome recognition, did not interact with AR. ELK1 thus directs selective and sustained gene induction that is a substantial and critical component of growth signaling by AR in PC cells. The ELK1-AR interaction offers a functionally tumor-selective drug target.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Proteína Elk-1 con Dominio ets/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Adolescente , Adulto , Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Núcleo Celular/genética , Núcleo Celular/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Humanos , Masculino , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Estructura Terciaria de Proteína , Receptores Androgénicos/genética , Compuestos de Tosilo/farmacología , Proteína Elk-1 con Dominio ets/genética
17.
J Cell Physiol ; 229(6): 688-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24129850

RESUMEN

AMP-activated protein kinase (AMPK) has recently emerged as a potential target for cancer therapy due to the observation that activation of AMPK inhibits tumor cell growth. It is well-known that androgen receptor (AR) signaling is a major driver for the development and progression of prostate cancer and that downregulation of AR is a critical step in the induction of apoptosis in prostate cancer cells. However, little is known about the potential interaction between AMPK and AR signaling pathways. In the current study, we showed that activation of AMPK by metformin caused decrease of AR protein level through suppression of AR mRNA expression and promotion of AR protein degradation, demonstrating that AMPK activation is upstream of AR downregulation. We also showed that inhibition of AR function by an anti-androgen or its siRNA enhanced AMPK activation and growth inhibition whereas overexpression of AR delayed AMPK activation and increased prostate cancer cellular resistance to metformin treatment, suggesting that AR suppresses AMPK signaling-mediated growth inhibition in a feedback mechanism. Our findings thus reveal a novel AMPK-AR regulatory loop in prostate cancer cells and should have a potential clinical significance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Anilidas/administración & dosificación , Anilidas/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Metformina/administración & dosificación , Metformina/farmacología , Nitrilos/administración & dosificación , Nitrilos/farmacología , Receptores Androgénicos/genética , Transducción de Señal/efectos de los fármacos , Compuestos de Tosilo/administración & dosificación , Compuestos de Tosilo/farmacología
18.
J Proteome Res ; 11(3): 1551-60, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22191536

RESUMEN

The folate binding protein (FBP), also known as the folate receptor (FR), is a glycoprotein which binds the vitamin folic acid and its analogues. FBP contains multiple N-glycosilation sites, is selectively expressed in tissues and body fluids, and mediates targeted therapies in cancer and inflammatory diseases. Much remains to be understood about the structure, composition, and the tissue specificities of N-glycans bound to FBP. Here, we performed structural characterization of N-linked glycans originating from bovine and human milk FBPs. The N-linked glycans were enzymatically released from FBPs, purified, and permethylated. Native and permethylated glycans were further analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry (MS), while tandem MS (MS/MS) was used for their structural characterization. The assignment of putative glycan structures from MS and MS/MS data was achieved using Functional Glycomics glycan database and SimGlycan software, respectively. It was found that FBP from human milk contains putative structures that have composition consistent with high-mannose (Hex(5-6)HexNAc(2)) as well as hybrid and complex N-linked glycans (NeuAc(0-1)Fuc(0-3)Hex(3-6)HexNAc(3-5)). The FBP from bovine milk contains putative structures corresponding to high-mannose (Hex(4-9)HexNAc(2)) as well as hybrid and complex N-linked glycans (Hex(3-6)HexNAc(3-6)), but these glycans mostly do not contain fucose and sialic acid. Glycomic characterization of FBP provides valuable insight into the structure of this pharmacologically important glycoprotein and may have utility in tissue-selective drug targeting and as a biomarker.


Asunto(s)
Receptores de Folato Anclados a GPI/química , Proteínas de la Leche/química , Polisacáridos/química , Animales , Secuencia de Carbohidratos , Bovinos , Trastornos Congénitos de Glicosilación , Humanos , Leche/química , Leche Humana/química , Datos de Secuencia Molecular , Peso Molecular , Polisacáridos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Breast Cancer Res ; 13(1): R18, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21299862

RESUMEN

INTRODUCTION: Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. METHODS: In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. RESULTS: Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-ß and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions. CONCLUSIONS: In hormone-sensitive breast cancer, ER can support a basal fraction of S-phase cells (i) without obvious association with ErbB2/3 expression, (ii) by mechanisms unaffected by hormone depletion or OH-Tam and (iii) through maintenance of the basal expression of apo-RARα1 to regulate a set of ATRA-insensitive genes. Since isoform 1 of RARα is genetically redundant, its targeted inactivation or downregulation should be further investigated as a potential means of enhancing hormonal adjuvant therapy.


Asunto(s)
Apoproteínas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ciclo Celular , Receptores de Estrógenos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tamoxifeno/uso terapéutico , Sitios de Unión/genética , Neoplasias de la Mama/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor alfa de Ácido Retinoico , Tamoxifeno/farmacología
20.
Oncogene ; 40(46): 6430-6442, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608266

RESUMEN

The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.


Asunto(s)
Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Unión al ARN/genética , Transactivadores/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA