Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(3): 446-457, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35177831

RESUMEN

T cells acquire a regulatory phenotype when their T cell antigen receptors (TCRs) experience an intermediate- to high-affinity interaction with a self-peptide presented via the major histocompatibility complex (MHC). Using TCRß sequences from flow-sorted human cells, we identified TCR features that promote regulatory T cell (Treg) fate. From these results, we developed a scoring system to quantify TCR-intrinsic regulatory potential (TiRP). When applied to the tumor microenvironment, TiRP scoring helped to explain why only some T cell clones maintained the conventional T cell (Tconv) phenotype through expansion. To elucidate drivers of these predictive TCR features, we then examined the two elements of the Treg TCR ligand separately: the self-peptide and the human MHC class II molecule. These analyses revealed that hydrophobicity in the third complementarity-determining region (CDR3ß) of the TCR promotes reactivity to self-peptides, while TCR variable gene (TRBV gene) usage shapes the TCR's general propensity for human MHC class II-restricted activation.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , Linaje de la Célula , Regiones Determinantes de Complementariedad/genética , Péptidos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T Reguladores
2.
Nat Immunol ; 22(6): 781-793, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34031617

RESUMEN

Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.


Asunto(s)
Memoria Inmunológica , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Perú , RNA-Seq , Factores Sexuales , Análisis de la Célula Individual , Factores Socioeconómicos , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Adulto Joven
4.
Nat Immunol ; 20(7): 915-927, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31110316

RESUMEN

The molecular and cellular processes that lead to renal damage and to the heterogeneity of lupus nephritis (LN) are not well understood. We applied single-cell RNA sequencing (scRNA-seq) to renal biopsies from patients with LN and evaluated skin biopsies as a potential source of diagnostic and prognostic markers of renal disease. Type I interferon (IFN)-response signatures in tubular cells and keratinocytes distinguished patients with LN from healthy control subjects. Moreover, a high IFN-response signature and fibrotic signature in tubular cells were each associated with failure to respond to treatment. Analysis of tubular cells from patients with proliferative, membranous and mixed LN indicated pathways relevant to inflammation and fibrosis, which offer insight into their histologic differences. In summary, we applied scRNA-seq to LN to deconstruct its heterogeneity and identify novel targets for personalized approaches to therapy.


Asunto(s)
Perfilación de la Expresión Génica , Interferón Tipo I/metabolismo , Queratinocitos/metabolismo , Túbulos Renales/citología , Túbulos Renales/metabolismo , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Transcriptoma , Biopsia , Linaje de la Célula/genética , Biología Computacional/métodos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis , Perfilación de la Expresión Génica/métodos , Humanos , Nefritis Lúpica/patología , Unión Proteica , Transducción de Señal , Análisis de la Célula Individual , Piel/inmunología , Piel/metabolismo , Piel/patología
6.
Nat Immunol ; 20(7): 928-942, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31061532

RESUMEN

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.


Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Perfilación de la Expresión Génica , Membrana Sinovial/metabolismo , Transcriptoma , Artritis Reumatoide/patología , Autoinmunidad/genética , Biomarcadores , Biología Computacional/métodos , Estudios Transversales , Citocinas/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Análisis de la Célula Individual/métodos , Membrana Sinovial/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Flujo de Trabajo
7.
Nat Immunol ; 20(7): 902-914, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209404

RESUMEN

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Asunto(s)
Riñón/inmunología , Nefritis Lúpica/inmunología , Biomarcadores , Biopsia , Análisis por Conglomerados , Biología Computacional/métodos , Células Epiteliales/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Interferones/metabolismo , Riñón/metabolismo , Riñón/patología , Leucocitos/inmunología , Leucocitos/metabolismo , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Anotación de Secuencia Molecular , Células Mieloides/inmunología , Células Mieloides/metabolismo , Análisis de la Célula Individual , Transcriptoma
8.
Nat Rev Genet ; 24(8): 535-549, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37085594

RESUMEN

Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.


Asunto(s)
Genoma , Genómica , Humanos , Genómica/métodos , Genotipo , Genética Humana
9.
Nature ; 606(7912): 120-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545678

RESUMEN

Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.


Asunto(s)
Predisposición Genética a la Enfermedad , Células T de Memoria , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Perú , Sitios de Carácter Cuantitativo/genética
10.
PLoS Genet ; 20(6): e1011313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870230

RESUMEN

A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.


Asunto(s)
Células Dendríticas , Macrófagos , Mycobacterium tuberculosis , Sitios de Carácter Cuantitativo , Tuberculosis , Humanos , Perú , Tuberculosis/genética , Tuberculosis/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/genética , Femenino , Células Dendríticas/metabolismo , Masculino , Adulto , Predisposición Genética a la Enfermedad , Variación Genética , Regulación de la Expresión Génica , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión Génica
11.
Annu Rev Genomics Hum Genet ; 24: 277-303, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196361

RESUMEN

Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Proyectos de Investigación
12.
Cell ; 147(1): 57-69, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962507

RESUMEN

Advances in genotyping and sequencing technologies have revolutionized the genetics of complex disease by locating rare and common variants that influence an individual's risk for diseases, such as diabetes, cancers, and psychiatric disorders. However, to capitalize on these data for prevention and therapies requires the identification of causal alleles and a mechanistic understanding for how these variants contribute to the disease. After discussing the strategies currently used to map variants for complex diseases, this Primer explores how variants may be prioritized for follow-up functional studies and the challenges and approaches for assessing the contributions of rare and common variants to disease phenotypes.


Asunto(s)
Mapeo Cromosómico , Enfermedad/genética , Predisposición Genética a la Enfermedad , Ensamble y Desensamble de Cromatina , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
13.
Nature ; 582(7811): 259-264, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499639

RESUMEN

The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint1,2. It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity3-5; however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


Asunto(s)
Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Receptor Notch3/metabolismo , Transducción de Señal , Membrana Sinovial/patología , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Células Endoteliales/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Receptor Notch3/antagonistas & inhibidores , Receptor Notch3/deficiencia , Receptor Notch3/genética , Antígenos Thy-1/metabolismo
14.
Nature ; 582(7811): 234-239, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499652

RESUMEN

On average, Peruvian individuals are among the shortest in the world1. Here we show that Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and identify a population-specific, missense variant in the FBN1 gene (E1297G) that is significantly associated with lower height. Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). To our knowledge, this is the largest effect size known for a common height-associated variant. FBN1 encodes the extracellular matrix protein fibrillin 1, which is a major structural component of microfibrils. We observed less densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of individuals who were homozygous for G1297 compared with individuals who were homozygous for E1297. Moreover, we show that the E1297G locus is under positive selection in non-African populations, and that the E1297 variant shows subtle evidence of positive selection specifically within the Peruvian population. This variant is also significantly more frequent in coastal Peruvian populations than in populations from the Andes or the Amazon, which suggests that short stature might be the result of adaptation to factors that are associated with the coastal environment in Peru.


Asunto(s)
Estatura/genética , Fibrilina-1/genética , Mutación Missense , Selección Genética , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Herencia , Humanos , Indígenas Sudamericanos/genética , Masculino , Microfibrillas/química , Microfibrillas/genética , Perú
15.
Trends Immunol ; 43(3): 180-194, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090787

RESUMEN

The T cell receptor (TCR) endows T cells with antigen specificity and is central to nearly all aspects of T cell function. Each naïve T cell has a unique TCR sequence that is stably maintained during cell division. In this way, the TCR serves as a molecular barcode that tracks processes such as migration, differentiation, and proliferation of T cells. Recent technological advances have enabled sequencing of the TCR from single cells alongside deep molecular phenotypes on an unprecedented scale. In this review, we discuss strengths and limitations of TCR sequences as molecular barcodes and their application to study immune responses following Programmed Death-1 (PD-1) blockade in cancer. Additionally, we consider applications of TCR data beyond use as a barcode.


Asunto(s)
Autoinmunidad , Neoplasias , Autoinmunidad/genética , Humanos , Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
16.
Nature ; 570(7760): 246-251, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142839

RESUMEN

The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs)1,2. However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage3-5. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα)+ fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα+ population: FAPα+THY1+ immune effector fibroblasts located in the synovial sub-lining, and FAPα+THY1- destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα+THY1- fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα+ THY1+ fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.


Asunto(s)
Artritis Reumatoide/patología , Fibroblastos/patología , Animales , Huesos/patología , Endopeptidasas , Femenino , Fibroblastos/clasificación , Fibroblastos/metabolismo , Gelatinasas/metabolismo , Humanos , Inflamación/patología , Articulaciones/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , RNA-Seq , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual , Membrana Sinovial/patología , Antígenos Thy-1/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(34): e2207392119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969771

RESUMEN

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Factores de Transcripción , Simulación por Computador , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Hum Mol Genet ; 31(14): 2471-2481, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35094092

RESUMEN

Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these features differ in prevalence between childhood-onset and adult-onset disease, suggesting that age of disease onset may influence pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date. Caucasian JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional non-assayed human leukocyte antigen (HLA) loci and genome-wide single-nucleotide polymorphisms (SNPs) were imputed. HLA-DRB1*03:01 was confirmed as the classical HLA allele most strongly associated with JDM [odds ratio (OR) 1.66; 95% confidence interval (CI) 1.46, 1.89; P = 1.4 × 10-14], with an independent association at HLA-C*02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10-8). Analyses of amino acid positions within HLA-DRB1 indicated that the strongest association was at position 37 (omnibus P = 3.3 × 10-19), with suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10-5), the position most strongly associated with adult-onset DM. Conditional analyses also suggested that the association at position 37 of HLA-DRB1 was independent of some alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1*02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10-8), but not HLA-DRB1*03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10-5). No associations outside the HLA region were identified. Our findings confirm previous associations with AH8.1 and HLA-DRB1*03:01, HLA-C*02:02 and identify a novel association with amino acid position 37 within HLA-DRB1, which may distinguish JDM from adult DM.


Asunto(s)
Dermatomiositis , Cadenas HLA-DRB1 , Miositis , Adulto , Alelos , Aminoácidos/genética , Niño , Dermatomiositis/diagnóstico , Dermatomiositis/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-C/genética , Cadenas HLA-DRB1/genética , Haplotipos/genética , Humanos , Miositis/diagnóstico , Miositis/genética
19.
J Allergy Clin Immunol ; 151(6): 1536-1549, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36804595

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE: We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS: Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS: Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS: These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Animales , Ratones , Receptor de Insulina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Inflamación/metabolismo , Sinusitis/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Enfermedad Crónica , Pólipos Nasales/metabolismo , Rinitis/metabolismo
20.
Immunol Rev ; 294(1): 188-204, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31782165

RESUMEN

Rheumatoid arthritis (RA) risk has a large genetic component (~60%) that is still not fully understood. This has hampered the design of effective treatments that could promise lifelong remission. RA is a polygenic disease with 106 known genome-wide significant associated loci and thousands of small effect causal variants. Our current understanding of RA risk has suggested cell-type-specific contexts for causal variants, implicating CD4 + effector memory T cells, as well as monocytes, B cells and stromal fibroblasts. While these cellular states and categories are still mechanistically broad, future studies may identify causal cell subpopulations. These efforts are propelled by advances in single cell profiling. Identification of causal cell subpopulations may accelerate therapeutic intervention to achieve lifelong remission.


Asunto(s)
Artritis Reumatoide/genética , Linfocitos B/fisiología , Linfocitos T CD4-Positivos/fisiología , Fibroblastos/fisiología , Monocitos/fisiología , Animales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Memoria Inmunológica , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA