RESUMEN
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.
Asunto(s)
Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Adipocitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Células Endoteliales/metabolismo , Células Enteroendocrinas , Epigenómica , Predisposición Genética a la Enfermedad/genética , Islotes Pancreáticos/metabolismo , Herencia Multifactorial/genética , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/genética , Análisis de la Célula IndividualRESUMEN
Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.
Asunto(s)
Antropometría , Genoma Humano , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN/métodos , Estatura/genética , Estudios de Cohortes , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Variación Genética , Humanos , Lipodistrofia/genética , Masculino , Metaanálisis como Asunto , Obesidad/genética , Mapeo Físico de Cromosoma , Caracteres Sexuales , Síndrome , Reino UnidoRESUMEN
It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.
Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Metabolismo de los Lípidos/genética , Lípidos/genética , Adolescente , Adulto , Anciano , Niño , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Exoma/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Lípidos/sangre , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Triglicéridos/sangre , Triglicéridos/genética , Población BlancaRESUMEN
BACKGROUND: Schizophrenia (SCZ) is associated with increased risk of type 2 diabetes (T2D). The potential diabetogenic effect of concomitant application of psychotropic treatment classes in patients with SCZ has not yet been evaluated. The overarching goal of the Genetic Overlap between Metabolic and Psychiatric disease (GOMAP) study is to assess the effect of pharmacological, anthropometric, lifestyle and clinical measurements, helping elucidate the mechanisms underlying the aetiology of T2D. METHODS: The GOMAP case-control study (Genetic Overlap between Metabolic and Psychiatric disease) includes hospitalized patients with SCZ, some of whom have T2D. We enrolled 1653 patients with SCZ; 611 with T2D and 1042 patients without T2D. This is the first study of SCZ and T2D comorbidity at this scale in the Greek population. We retrieved detailed information on first- and second-generation antipsychotics (FGA, SGA), antidepressants and mood stabilizers, applied as monotherapy, 2-drug combination, or as 3- or more drug combination. We assessed the effects of psychotropic medication, body mass index, duration of schizophrenia, number of hospitalizations and physical activity on risk of T2D. Using logistic regression, we calculated crude and adjusted odds ratios (OR) to identify associations between demographic factors and the psychiatric medications. RESULTS: Patients with SCZ on a combination of at least three different classes of psychiatric drugs had a higher risk of T2D [OR 1.81 (95% CI 1.22-2.69); p = 0.003] compared to FGA alone therapy, after adjustment for age, BMI, sex, duration of SCZ and number of hospitalizations. We did not find evidence for an association of SGA use or the combination of drugs belonging to two different classes of psychiatric medications with increased risk of T2D [1.27 (0.84-1.93), p = 0.259 and 0.98 (0.71-1.35), p = 0.885, respectively] compared to FGA use. CONCLUSIONS: We find an increased risk of T2D in patients with SCZ who take a combination of at least three different psychotropic medication classes compared to patients whose medication consists only of one or two classes of drugs.
Asunto(s)
Antipsicóticos/administración & dosificación , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/epidemiología , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/epidemiología , Adulto , Anciano , Antipsicóticos/efectos adversos , Estudios de Casos y Controles , Terapia Combinada , Comorbilidad , Diabetes Mellitus Tipo 2/genética , Femenino , Grecia/epidemiología , Hospitalización/tendencias , Humanos , Masculino , Persona de Mediana Edad , Psicotrópicos/administración & dosificación , Psicotrópicos/efectos adversos , Factores de Riesgo , Esquizofrenia/genéticaRESUMEN
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU)â=â0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response-related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS-associated versus un-associated modules (ABD: 0.48 versus 0.18, Pâ=â0.08; GLU: 0.54 versus 0.20, Pâ=â7.8×10(-4)). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS-related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (Pâ=â6.0×10(-4)); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (Pâ=â8.7×10(-4)) and BMI-adjusted waist-to-hip ratio (Pâ=â2.4×10(-4)). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Asunto(s)
Tejido Adiposo/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Síndrome Metabólico/genética , Índice de Masa Corporal , Quimiocinas/genética , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Síndrome Metabólico/patología , Especificidad de Órganos , Fenotipo , Sitios de Carácter CuantitativoRESUMEN
Osteoarthritis (OA) is a prevalent, heritable degenerative joint disease with a substantial public health impact. We used a 1000-Genomes-Project-based imputation in a genome-wide association scan for osteoarthritis (3177 OA cases and 4894 controls) to detect a previously unidentified risk locus. We discovered a small disease-associated set of variants on chromosome 13. Through large-scale replication, we establish a robust association with SNPs in MCF2L (rs11842874, combined odds ratio [95% confidence interval] 1.17 [1.11-1.23], p = 2.1 × 10(-8)) across a total of 19,041 OA cases and 24,504 controls of European descent. This risk locus represents the third established signal for OA overall. MCF2L regulates a nerve growth factor (NGF), and treatment with a humanized monoclonal antibody against NGF is associated with reduction in pain and improvement in function for knee OA patients.
Asunto(s)
Cromosomas Humanos Par 13/genética , Predisposición Genética a la Enfermedad/genética , Factores de Intercambio de Guanina Nucleótido/genética , Osteoartritis/genética , Anticuerpos Monoclonales/uso terapéutico , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Factor de Crecimiento Nervioso/inmunología , Factor de Crecimiento Nervioso/metabolismo , Oportunidad Relativa , Osteoartritis/inmunología , Polimorfismo de Nucleótido Simple/genética , Factores de Intercambio de Guanina Nucleótido Rho , Población Blanca/genéticaRESUMEN
Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 cis-effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these cis- and distal-effector genes using either expression QTL data from understudied ancestry groups or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the value of increasing population diversity in functional mapping. Linking these variants, genes, metabolites, and traits into a network, we elucidated mechanisms through which T2D-associated variation may impact disease risk. Finally, we showed that drugs targeting effector proteins were enriched in those approved to treat T2D, highlighting the potential of these results to prioritize drug targets for T2D. These results represent a leap in the molecular characterization of T2D-associated genetic variation and will aid in translating genetic findings into novel therapeutic strategies.
RESUMEN
Although numerous genes are known to regulate serum lipid traits, identified variants explain only a small proportion of the expected heritability. We intended to identify further genetic variants associated with lipid phenotypes in a self-contained population of Sorbs in Germany. We performed a genome-wide association study (GWAS) on LDL-cholesterol, HDL-cholesterol (HDL-C), and triglyceride (TG) levels in 839 Sorbs. All single-nucleotide polymorphisms with a P value <0.01 were subjected to a meta-analysis, including an independent Swedish cohort (Diabetes Genetics Initiative; n = â¼3,100). Novel association signals with the strongest effects were subjected to replication studies in an additional German cohort (Berlin, n = 2,031). In the initial GWAS in the Sorbs, we identified 14 loci associated with lipid phenotypes reaching P values <10â»5 and confirmed significant effects for 18 previously reported loci. The combined meta-analysis of the three study cohorts (n(HDL) = 6041; n(LDL) = 5,995; n(TG) = 6,087) revealed a novel association for a variant in THOC5 (rs8135828) with serum HDL-C levels (P = 1.78 × 10â»7; Z-score = -5.221). Consistently, the variant was also associated with circulating APOA1 levels in Sorbs. The small interfering RNA-mediated mRNA silencing of THOC5 in HepG2 cells resulted in lower mRNA levels of APOA1, SCARB1, and ABCG8 (all P < 0.05). We propose THOC5 to be a novel gene involved in the regulation of serum HDL-C levels.
Asunto(s)
HDL-Colesterol/metabolismo , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Alemania/etnología , Células Hep G2 , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. METHODS: We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. FINDINGS: We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. INTERPRETATION: Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention. FUNDING: arcOGEN was funded by a special purpose grant from Arthritis Research UK.
Asunto(s)
Osteoartritis/genética , Artroplastia de Reemplazo , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Osteoartritis/cirugía , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/cirugía , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/cirugía , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVES: Osteoarthritis (OA) has a complex aetiology with a strong genetic component. Genome-wide association studies implicate several nuclear genes in the aetiology, but a major component of the heritability has yet to be defined at the molecular level. Initial studies implicate maternally inherited variants of mitochondrial DNA (mtDNA) in subgroups of patients with OA based on gender and specific joint involvement, but these findings have not been replicated. METHODS: The authors studied 138 maternally inherited mtDNA variants genotyped in a two cohort genetic association study across a total of 7393 OA cases from the arcOGEN consortium and 5122 controls genotyped in the Wellcome Trust Case Control consortium 2 study. RESULTS: Following data quality control we examined 48 mtDNA variants that were common in cohort 1 and cohort 2, and found no association with OA. None of the phenotypic subgroups previously associated with mtDNA haplogroups were associated in this study. CONCLUSIONS: We were not able to replicate previously published findings in the largest mtDNA association study to date. The evidence linking OA to mtDNA is not compelling at present.
Asunto(s)
ADN Mitocondrial/genética , Osteoartritis/genética , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Humanos , Masculino , Análisis de Componente PrincipalRESUMEN
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Asunto(s)
Peso Corporal/genética , Sitios Genéticos , Genoma Humano , Obesidad/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Índice de Masa Corporal , Niño , Francia/epidemiología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Alemania/epidemiología , Humanos , Obesidad/epidemiología , Polimorfismo de Nucleótido SimpleRESUMEN
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.
RESUMEN
We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.
Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Etnicidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de RiesgoRESUMEN
Recently, associations of several common genetic variants with height have been reported in different populations. We attempted to identify further variants associated with adult height in a self-contained population (the Sorbs in Eastern Germany) as discovery set. We performed a genome wide association study (GWAS) (approximately 390,000 genetic polymorphisms, Affymetrix gene arrays) on adult height in 929 Sorbian individuals. Subsequently, the best SNPs (P < 0.001) were taken forward to a meta-analysis together with two independent cohorts [Diabetes Genetics Initiative, British 1958 Birth Cohort, (58BC, publicly available)]. Furthermore, we genotyped our best signal for replication in two additional German cohorts (Leipzig, n = 1044 and Berlin, n = 1728). In the primary Sorbian GWAS, we identified 5 loci with a P-value < 10(-5) and 455 SNPs with P-value < 0.001. In the meta-analysis on those 455 SNPs, only two variants in GPR133 (rs1569019 and rs1976930; in LD with each other) retained a P-value at or below 10(-6) and were associated with height in the three cohorts individually. Upon replication, the SNP rs1569019 showed significant effects on height in the Leipzig cohort (P = 0.004, beta = 1.166) and in 577 men of the Berlin cohort (P = 0.049, beta = 1.127) though not in women. The combined analysis of all five cohorts (n = 6,687) resulted in a P-value of 4.7 x 10(-8) (beta = 0.949). In conclusion, our GWAS suggests novel loci influencing height. In view of the robust replication in five different cohorts, we propose GPR133 to be a novel gene associated with adult height.
Asunto(s)
Estatura , Variación Genética , Estudio de Asociación del Genoma Completo , Receptores Acoplados a Proteínas G/genética , Población Blanca/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Alemania/etnología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Población Blanca/etnologíaRESUMEN
BACKGROUND: The TNF/LTA locus has been a long-standing T2D candidate gene. Several studies have examined association of TNF/LTA SNPs with T2D but the majority have been small-scale and produced no convincing evidence of association. The purpose of this study is to examine T2D association of tag SNPs in the TNF/LTA region capturing the majority of common variation in a large-scale sample set of UK/Irish origin. METHODS: This study comprised a case-control (1520 cases and 2570 control samples) and a family-based component (423 parent-offspring trios). Eleven tag SNPs (rs928815, rs909253, rs746868, rs1041981 (T60N), rs1800750, rs1800629 (G-308A), rs361525 (G-238A), rs3093662, rs3093664, rs3093665, and rs3093668) were selected across the TNF/LTA locus and genotyped using a fluorescence-based competitive allele specific assay. Quality control of the obtained genotypes was performed prior to single- and multi-point association analyses under the additive model. RESULTS: We did not find any consistent SNP associations with T2D in the case-control or family-based datasets. CONCLUSIONS: The present study, designed to analyse a set of tag SNPs specifically selected to capture the majority of common variation in the TNF/LTA gene region, found no robust evidence for association with T2D. To investigate the presence of smaller effects of TNF/LTA gene variation with T2D, a large-scale meta-analysis will be required.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Sitios Genéticos/genética , Linfotoxina-alfa/genética , Polimorfismo de Nucleótido Simple , Femenino , Genotipo , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , LinajeRESUMEN
The present study describes the geographically isolated Pomak population and its particular dietary patterns in relationship to cardiovascular risk factors. We collected a population-based cohort in a cross-sectional study, with detailed anthropometric, biochemical, clinical, and lifestyle parameter information. Dietary patterns were derived through principal component analysis based on a validated food-frequency questionnaire, administered to 1702 adult inhabitants of the Pomak villages on the Rhodope mountain range in Greece. A total of 69.9% of the participants were female with a population mean age of 44.9 years; 67% of the population were overweight or obese with a significantly different prevalence for obesity between men and women (17.5% vs. 37.5%, respectively, p < 0.001). Smoking was more prevalent in men (45.8% vs. 2.2%, p < 0.001), as 97.3% of women had never smoked. Four dietary patterns emerged as characteristic of the population, and were termed "high in sugars", "quick choices", "balanced", and "homemade". Higher adherence to the "high in sugars" dietary pattern was associated with increased glucose levels (p < 0.001) and increased risk of hypertension (OR (95% CI) 2.61 (1.55, 4.39), p < 0.001) and nominally associated with high blood glucose levels (OR (95% CI) 1.85 (1.11, 3.08), p = 0.018), compared to lower adherence. Overall, we characterize the dietary patterns of the Pomak population and describe associations with cardiovascular risk factors.
Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Dieta/estadística & datos numéricos , Azúcares de la Dieta/análisis , Etnicidad/estadística & datos numéricos , Sobrepeso/epidemiología , Adulto , Bulgaria/epidemiología , Femenino , Grecia/epidemiología , Humanos , Hipertensión , Islamismo , Estilo de Vida , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Factores de RiesgoRESUMEN
The role of rare variants in complex traits remains uncharted. Here, we conduct deep whole genome sequencing of 1457 individuals from an isolated population, and test for rare variant burdens across six cardiometabolic traits. We identify a role for rare regulatory variation, which has hitherto been missed. We find evidence of rare variant burdens that are independent of established common variant signals (ADIPOQ and adiponectin, P = 4.2 × 10-8; APOC3 and triglyceride levels, P = 1.5 × 10-26), and identify replicating evidence for a burden associated with triglyceride levels in FAM189B (P = 2.2 × 10-8), indicating a role for this gene in lipid metabolism.
Asunto(s)
Alelos , Carácter Cuantitativo Heredable , Secuenciación Completa del Genoma , Estudios de Cohortes , Frecuencia de los Genes/genética , Variación Genética , HumanosRESUMEN
The original version of this Article contained an error in Fig. 2. In panel a, the two legend items "rare" and "common" were inadvertently swapped. This has been corrected in both the PDF and HTML versions of the Article.
RESUMEN
Recent data suggest that common variation in the transcription factor 7-like 2 (TCF7L2) gene is associated with type 2 diabetes. Evaluation of such associations in independent samples provides necessary replication and a robust assessment of effect size. Using four TCF7L2 single nucleotide polymorphisms (SNPs; including the two most associated in the previous study), we conducted a case-control study in 2,158 type 2 diabetic subjects and 2,574 control subjects and a family-based association analysis in 388 parent-offspring trios all from the U.K. All SNPs showed powerful associations with diabetes in the case-control analysis, with strongest effects at rs7903146 (allele-wise relative risk 1.36 [95% CI 1.24-1.48], P = 1.3 x 10(-11)). Data were consistent with a multiplicative model. The family-based analyses provided independent evidence for association at all loci (e.g., rs4506565, 62% transmission, P = 7 x 10(-5)) with no parent-of-origin effects. The frequency of diabetes-associated TCF7L2 genotypes was greater in cases ascertained for positive family history and early onset (rs4606565, P = 0.02); the population-attributable risk, estimated from the least-selected cases, is approximately 16%. The overall evidence for association for these variants (P = 4.4 x 10(-14) combining case-control and family-based analyses for rs4506565) exceeds genome-wide significance criteria and clearly establishes TCF7L2 as a type 2 diabetes susceptibility gene of substantial importance.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Factores de Transcripción TCF/genética , Adulto , Anciano , Femenino , Frecuencia de los Genes , Genética de Población , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Proteína 2 Similar al Factor de Transcripción 7 , Reino UnidoRESUMEN
Next-generation association studies can be empowered by sequence-based imputation and by studying founder populations. Here we report â¼9.5 million variants from whole-genome sequencing (WGS) of a Cretan-isolated population, and show enrichment of rare and low-frequency variants with predicted functional consequences. We use a WGS-based imputation approach utilizing 10,422 reference haplotypes to perform genome-wide association analyses and observe 17 genome-wide significant, independent signals, including replicating evidence for association at eight novel low-frequency variant signals. Two novel cardiometabolic associations are at lead variants unique to the founder population sequences: chr16:70790626 (high-density lipoprotein levels beta -1.71 (SE 0.25), P=1.57 × 10-11, effect allele frequency (EAF) 0.006); and rs145556679 (triglycerides levels beta -1.13 (SE 0.17), P=2.53 × 10-11, EAF 0.013). Our findings add empirical support to the contribution of low-frequency variants in complex traits, demonstrate the advantage of including population-specific sequences in imputation panels and exemplify the power gains afforded by population isolates.