Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36515556

RESUMEN

In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.


Asunto(s)
Actinas , Pez Cebra , Animales , Movimiento Celular/fisiología , Células Germinativas
2.
Development ; 148(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722898

RESUMEN

Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes. In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.


Asunto(s)
Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Citocinesis/fisiología , Femenino , Fertilidad/genética , Fertilidad/fisiología , Técnicas de Inactivación de Genes , Masculino , Mutagénesis , Células Madre/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Nature ; 615(7952): 402-403, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859662
4.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33574063

RESUMEN

To study the mechanisms controlling front-rear polarity in migrating cells, we used zebrafish primordial germ cells (PGCs) as an in vivo model. We find that polarity of bleb-driven migrating cells can be initiated at the cell front, as manifested by actin accumulation at the future leading edge and myosin-dependent retrograde actin flow toward the other side of the cell. In such cases, the definition of the cell front, from which bleb-inhibiting proteins such as Ezrin are depleted, precedes the establishment of the cell rear, where those proteins accumulate. Conversely, following cell division, the accumulation of Ezrin at the cleavage plane is the first sign for cell polarity and this aspect of the cell becomes the cell back. Together, the antagonistic interactions between the cell front and back lead to a robust polarization of the cell. Furthermore, we show that chemokine signaling can bias the establishment of the front-rear axis of the cell, thereby guiding the migrating cells toward sites of higher levels of the attractant. We compare these results to a theoretical model according to which a critical value of actin treadmilling flow can initiate a positive feedback loop that leads to the generation of the front-rear axis and to stable cell polarization. Together, our in vivo findings and the mathematical model, provide an explanation for the observed nonoriented migration of primordial germ cells in the absence of the guidance cue, as well as for the directed migration toward the region where the gonad develops.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Polaridad Celular , Quimiocinas/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Transporte de Proteínas , Pez Cebra
5.
Hum Reprod ; 38(4): 655-670, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807972

RESUMEN

STUDY QUESTION: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this? SUMMARY ANSWER: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility. WHAT IS KNOWN ALREADY: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing. STUDY DESIGN, SIZE, DURATION: Exome data from 1305 men included in the Male Reproductive Genomics cohort were examined in this study. A total of 1114 of the patients showed severely impaired spermatogenesis but were otherwise healthy. Eighty-five men with intact spermatogenesis were included in the study as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We screened the human exome data for rare, stop-gain, frameshift, splice site, as well as missense variants in DND1. The results were validated by Sanger sequencing. Immunohistochemical techniques and, when possible, segregation analyses were performed for patients with identified DND1 variants. The amino acid exchange in the human variant was mimicked at the corresponding site of the zebrafish protein. Using different aspects of germline development in live zebrafish embryos as biological assays, we examined the activity level of these DND1 protein variants. MAIN RESULTS AND THE ROLE OF CHANCE: In human exome sequencing data, we identified four heterozygous variants in DND1 (three missense and one frameshift variant) in five unrelated patients. The function of all of the variants was examined in the zebrafish and one of those was studied in more depth in this model. We demonstrate the use of zebrafish assays as a rapid and effective biological readout for evaluating the possible impact of multiple gene variants on male fertility. This in vivo approach allowed us to assess the direct impact of the variants on germ cell function in the context of the native germline. Focusing on the DND1 gene, we find that zebrafish germ cells, expressing orthologs of DND1 variants identified in infertile men, failed to arrive correctly at the position where the gonad develops and exhibited defects in cell fate maintenance. Importantly, our analysis facilitated the evaluation of single nucleotide variants, whose impact on protein function is difficult to predict, and allowed us to distinguish variants that do not affect the protein's activity from those that strongly reduce it and could thus potentially be the primary cause for the pathological condition. These aberrations in germline development resemble the testicular phenotype of azoospermic patients. LIMITATIONS, REASONS FOR CAUTION: The pipeline we present requires access to zebrafish embryos and to basic imaging equipment. The notion that the activity of the protein in the zebrafish-based assays is relevant for the human homolog is well supported by previous knowledge. Nevertheless, the human protein may differ in some respects from its homologue in zebrafish. Thus, the assay should be considered only one of the parameters used in defining DND1 variants as causative or non-causative for infertility. WIDER IMPLICATIONS OF THE FINDINGS: Using DND1 as an example, we have shown that the approach described in this study, relying on bridging between clinical findings and fundamental cell biology, can help to establish links between novel human disease candidate genes and fertility. In particular, the power of the approach we developed is manifested by the fact that it allows the identification of DND1 variants that arose de novo. The strategy presented here can be applied to different genes in other disease contexts. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the German Research Foundation, Clinical Research Unit, CRU326 'Male Germ Cells'. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Infertilidad Masculina , Pez Cebra , Animales , Humanos , Masculino , Pez Cebra/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Testículo/patología , Fertilidad , Fenotipo , Proteínas de Neoplasias/genética
6.
Cell ; 132(3): 463-73, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18267076

RESUMEN

Primordial germ cell (PGC) migration in zebrafish is directed by the chemokine SDF-1a that activates its receptor CXCR4b. Little is known about the molecular mechanisms controlling the distribution of this chemoattractant in vivo. We demonstrate that the activity of a second SDF-1/CXCL12 receptor, CXCR7, is crucial for proper migration of PGCs toward their targets. We show that CXCR7 functions primarily in the somatic environment rather than within the migrating cells. In CXCR7 knocked-down embryos, the PGCs exhibit a phenotype that signifies defects in SDF-1a gradient formation as the cells fail to polarize effectively and to migrate toward their targets. Indeed, somatic cells expressing CXCR7 show enhanced internalization of the chemokine suggesting that CXCR7 acts as a sink for SDF-1a, thus allowing the dynamic changes in the transcription of sdf-1a to be mirrored by similar dynamics at the protein level.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Células Germinativas/citología , Receptores CXCR/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Polaridad Celular , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Receptores CXCR/genética , Proteínas de Pez Cebra/genética
7.
Semin Cell Dev Biol ; 100: 152-159, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31864795

RESUMEN

In many organisms, primordial germ cells (PGCs) are specified at a different location than where the gonad forms, meaning that PGCs must migrate toward the gonad within the early developing embryo. Following species-specific paths, PGCs can be passively carried by surrounding tissues and also perform active migration. When PGCs actively migrate through and along a variety of embryonic structures in different organisms, they adopt an ancestral robust migration mode termed "amoeboid motility", which allows cells to migrate within diverse environments. In this review, we discuss the possible significance of the PGC migration process in facilitating the evolution of animal body shape. In addition, we summarize the latest findings relevant for the molecular and cellular mechanisms controlling the movement and the directed migration of PGCs in different species.


Asunto(s)
Movimiento Celular , Células Germinativas/citología , Animales , Células Germinativas/metabolismo , Humanos
9.
Biophys J ; 117(8): 1485-1495, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445681

RESUMEN

Bleb-type cellular protrusions play key roles in a range of biological processes. It was recently found that bleb growth is facilitated by a local supply of membrane from tubular invaginations, but the interplay between the expanding bleb and the membrane tubes remains poorly understood. On the one hand, the membrane area stored in tubes may serve as a reservoir for bleb expansion. On the other hand, the sequestering of excess membrane in stabilized invaginations may effectively increase the cell membrane tension, which suppresses spontaneous protrusions. Here, we investigate this duality through physical modeling and in vivo experiments. In agreement with observations, our model describes the transition into a tube-flattening mode of bleb expansion while also predicting that the blebbing rate is impaired by elevating the concentration of the curved membrane proteins that form the tubes. We show both theoretically and experimentally that the stabilizing effect of tubes could be counterbalanced by the cortical myosin contractility. Our results largely suggest that proteins able to induce membrane tubulation, such as those containing N-BAR domains, can buffer the effective membrane tension-a master regulator of all cell deformations.


Asunto(s)
Membrana Celular/química , Extensiones de la Superficie Celular/química , Modelos Teóricos , Estrés Mecánico , Animales , Miosinas/química , Dominios Proteicos , Pez Cebra
10.
Dev Biol ; 436(2): 84-93, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477339

RESUMEN

Zebrafish primordial germ cells (PGCs) constitute a useful in vivo model to study cell migration and to elucidate the role of specific proteins in this process. Here we report on the role of the heat shock protein Hsp90aa1.2, a protein whose RNA level is elevated in the PGCs during their migration. Reducing Hsp90aa1.2 activity slows down the progression through the cell cycle and leads to defects in the control over the MTOC number in the migrating cells. These defects result in a slower migration rate and compromise the arrival of PGCs at their target, the region where the gonad develops. Our results emphasize the importance of ensuring rapid progression through the cell cycle during single-cell migration and highlight the role of heat shock proteins in the process.


Asunto(s)
Ciclo Celular/genética , División Celular/genética , Movimiento Celular/genética , Células Germinativas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Animales , División Celular/fisiología , Movimiento Celular/fisiología , Células Germinativas/citología , Células Germinativas/fisiología , Hibridación in Situ , Pez Cebra/genética
11.
EMBO J ; 34(10): 1309-18, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25762592

RESUMEN

Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas/metabolismo , Animales , Citocinas/metabolismo , Femenino , Masculino , Modelos Biológicos , Neutrófilos/metabolismo , Pez Cebra
12.
Development ; 141(16): 3188-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063456

RESUMEN

Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models were built to explore how a polarized response to Cxcl12a, mediated by Cxcr4b in leading cells and prevented by Cxcr7b in trailing cells, determines unidirectional migration of the PLLp. These chemokine signaling-based models effectively recapitulate many behaviors of the PLLp and provide potential explanations for the characteristic behaviors that emerge when the PLLp is severed by laser to generate leading and trailing fragments. As predicted by our models, the bilateral stretching of the leading fragment is lost when chemokine signaling is blocked in the PLLp. However, movement of the trailing fragment toward the leading cells, which was also thought to be chemokine dependent, persists. This suggested that a chemokine-independent mechanism, not accounted for in our models, is responsible for this behavior. Further investigation of trailing cell behavior shows that their movement toward leading cells depends on FGF signaling and it can be re-oriented by exogenous FGF sources. Together, our observations reveal the simple yet elegant manner in which leading and trailing cells coordinate migration; while leading cells steer PLLp migration by following chemokine cues, cells further back play follow-the-leader as they migrate toward FGFs produced by leading cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Comunicación Celular , Movimiento Celular , Quimiocina CXCL12/fisiología , Quimiocinas/metabolismo , Simulación por Computador , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores CXCR/fisiología , Receptores CXCR4/fisiología , Transducción de Señal , Proteínas de Pez Cebra/fisiología
13.
Proc Natl Acad Sci U S A ; 111(31): 11389-94, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049415

RESUMEN

The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.


Asunto(s)
Movimiento Celular , Proteínas RGS/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular/genética , Polaridad Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas RGS/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Bioessays ; 36(8): 741-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24924601

RESUMEN

The identification of molecules controlling embryonic patterning and their functional analysis has revolutionized the fields of Developmental and Cell Biology. The use of new sequence information and modern bioinformatics tools has enriched the list of proteins that could potentially play a role in regulating cell behavior and function during early development. The recent application of efficient methods for gene knockout in zebrafish has accelerated the functional analysis of many proteins, some of which have been overlooked due to their small size. Two recent publications report on the identification of one such protein and its role in zebrafish embryogenesis. The protein, currently designated Apela, was shown to act as a secreted protein whose absence adversely affected various early developmental processes. Additional signaling proteins that have been identified in one of the studies are likely to open the way to unraveling hitherto unknown developmental pathways and have the potential to provide a more comprehensive understanding of known developmental processes.


Asunto(s)
Transducción de Señal , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Animales , Receptores de Apelina , Gástrula/metabolismo , Gastrulación , Corazón/embriología , Humanos , Organogénesis , Receptores Acoplados a Proteínas G/fisiología , Pez Cebra/embriología
15.
Development ; 139(1): 57-62, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096073

RESUMEN

During development, primordial germ cells (PGCs) migrate from the sites of their specification towards the region in which the future gonad develops. This cell migration requires polarization of PGCs and their responsiveness to external guidance cues. In zebrafish, the directed migration and polarization of PGCs are regulated independently, by the chemokine Cxcl12a and the Rho GTPase Rac1, respectively. However, the upstream signals controlling Rac activity in this context have not yet been identified. By investigating the role of G proteins in PGC migration, we found that signaling mediated by G protein subunits Gßγ is required to regulate cell polarization. PGCs that are defective for Gßγ signaling failed to polarize, and developed multiple protrusions in random locations, resembling the defects observed in PGCs with decreased Rac activity. These defects render PGCs incapable of migrating actively and responding to directional cues. FRET-based assays showed that PGCs require Gßγ signaling for polarized Rac activation and actin organization at the leading front, as well as for maintaining overall Rac levels in these cells. Conversely, overexpression of Gßγ in PGCs increases Rac activity. Our results indicate that during PGC migration in vivo, Gßγ signaling regulates Rac activity to control cell polarity, which is required for the responsiveness to chemokine signaling.


Asunto(s)
Polaridad Celular/fisiología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células Germinativas/fisiología , Gónadas/embriología , Pez Cebra/embriología , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Clonación Molecular , Transferencia Resonante de Energía de Fluorescencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Imagen de Lapso de Tiempo
16.
Development ; 139(16): 2897-902, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22791893

RESUMEN

A crucial regulator of Cxcl12 is the decoy receptor Cxcr7, which controls the level of the chemokine in the tissue. The molecular mechanisms that enable Cxcr7 to function as an efficient molecular sink are not known. Using zebrafish primordial germ cells as a model, we identify a novel role for ß-arrestins in controlling the intracellular trafficking of Cxcr7. ß-arrestins facilitate the recycling of Cxcr7 from late endosomal compartments back to the plasma membrane, whereas the internalized ligand undergoes lysosomal degradation. ß-arrestins thus function in regulating chemokine gradient formation, allowing responding cells to discriminate between alternative migration targets in vivo.


Asunto(s)
Arrestinas/metabolismo , Receptores CXCR/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Arrestinas/antagonistas & inhibidores , Arrestinas/genética , Movimiento Celular/fisiología , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Endosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Germinativas/citología , Células Germinativas/metabolismo , Receptores CXCR/genética , Distribución Tisular , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , beta-Arrestinas
17.
Development ; 139(15): 2711-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22782722

RESUMEN

The Hedgehog (Hh) pathway plays dual roles in proliferation and patterning during embryonic development, but the mechanism(s) that distinguish the mitogenic and patterning activities of Hh signalling are not fully understood. An additional level of complexity is provided by the observation that Hh signalling can both promote and inhibit cell proliferation. One model to account for this apparent paradox is that Hh signalling primarily regulates cell cycle kinetics, such that activation of Hh signalling promotes fast cycling and an earlier cell cycle exit. Here we report that activation of Hh signalling promotes endodermal cell proliferation but inhibits proliferation in neighbouring non-endodermal cells, suggesting that the cell cycle kinetics model is insufficient to account for the opposing proliferative responses to Hh signalling. We show that expression of the chemokine receptor Cxcr4a is a critical parameter that determines the proliferative response to Hh signalling, and that loss of Cxcr4a function attenuates the transcription of cell cycle regulator targets of Hh signalling without affecting general transcriptional targets. We show that Cxcr4a inhibits PKA activity independently of Hh signalling, and propose that Cxcr4a enhances Hh-dependent proliferation by promoting the activity of Gli1. Our results indicate that Cxcr4a is required for Hh-dependent cell proliferation but not for Hh-dependent patterning, and suggest that the parallel activation of Cxcr4a is required to modulate the Hh pathway to distinguish between patterning and proliferation.


Asunto(s)
Endodermo/metabolismo , Receptores CXCR4/fisiología , Proteínas de Pez Cebra/fisiología , Alelos , Animales , Tipificación del Cuerpo , Proliferación Celular , Cruzamientos Genéticos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Endodermo/citología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/metabolismo , Cinética , Ratones , Cresta Neural/citología , ARN Mensajero/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/metabolismo
19.
BMC Biol ; 12: 55, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124741

RESUMEN

BACKGROUND: Whole-mount in situ hybridization (WISH) is a fundamental tool for studying the spatio-temporal expression pattern of RNA molecules in intact embryos and tissues. The available methodologies for detecting mRNAs in embryos rely on enzymatic activities and chemical reactions that generate diffusible products, which are not fixed to the detected RNA, thereby reducing the spatial resolution of the technique. In addition, current WISH techniques are time-consuming and are usually not combined with methods reporting the expression of protein molecules. RESULTS: The protocol we have developed and present here is based on the RNAscope technology that is currently employed on formalin-fixed, paraffin-embedded and frozen tissue sections for research and clinical applications. By using zebrafish embryos as an example, we provide a robust and rapid method that allows the simultaneous visualization of multiple transcripts, demonstrated here for three different RNA molecules. The optimized procedure allows the preservation of embryo integrity, while exhibiting excellent signal-to-noise ratios. Employing this method thus allows the determination of the spatial expression pattern and subcellular localization of multiple RNA molecules relative to each other at high resolution, in the three-dimensional context of the developing embryo or tissue under investigation. Lastly, we show that this method preserves the function of fluorescent proteins that are expressed in specific cells or cellular organelles and conserves antigenicity, allowing protein detection using antibodies. CONCLUSIONS: By fine-tuning the RNAscope technology, we have successfully redesigned the protocol to be compatible with whole-mount embryo samples. Using this robust method for zebrafish and extending it to other organisms would have a strong impact on research in developmental, molecular and cell biology. Of similar significance would be the adaptation of the method to whole-mount clinical samples. Such a protocol would contribute to biomedical research and clinical diagnostics by providing information regarding the three-dimensional expression pattern of clinical markers.


Asunto(s)
Proteínas de Peces/genética , Técnicas Genéticas , Hibridación in Situ , ARN Mensajero/genética , Transcripción Genética , Pez Cebra/genética , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas de Peces/metabolismo , ARN Mensajero/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
20.
Development ; 138(14): 2909-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21693511

RESUMEN

The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization--the specialization of two gene copies to perform complementary functions following gene duplication--which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes.


Asunto(s)
Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Evolución Molecular , Células Germinativas/fisiología , Receptores CXCR4/metabolismo , Pez Cebra/embriología , Sustitución de Aminoácidos , Animales , Línea Celular , Quimiocina CXCL12/genética , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Microscopía Confocal , Espectrometría de Fluorescencia , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA