Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(32): 19228-19236, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32703810

RESUMEN

The ATP-binding cassette (ABC) transporter of mitochondria (Atm1) mediates iron homeostasis in eukaryotes, while the prokaryotic homolog from Novosphingobium aromaticivorans (NaAtm1) can export glutathione derivatives and confer protection against heavy-metal toxicity. To establish the structural framework underlying the NaAtm1 transport mechanism, we determined eight structures by X-ray crystallography and single-particle cryo-electron microscopy in distinct conformational states, stabilized by individual disulfide crosslinks and nucleotides. As NaAtm1 progresses through the transport cycle, conformational changes in transmembrane helix 6 (TM6) alter the glutathione-binding site and the associated substrate-binding cavity. Significantly, kinking of TM6 in the post-ATP hydrolysis state stabilized by MgADPVO4 eliminates this cavity, precluding uptake of glutathione derivatives. The presence of this cavity during the transition from the inward-facing to outward-facing conformational states, and its absence in the reverse direction, thereby provide an elegant and conceptually simple mechanism for enforcing the export directionality of transport by NaAtm1. One of the disulfide crosslinked NaAtm1 variants characterized in this work retains significant glutathione transport activity, suggesting that ATP hydrolysis and substrate transport by Atm1 may involve a limited set of conformational states with minimal separation of the nucleotide-binding domains in the inward-facing conformation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Sphingomonadaceae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Glutatión/química , Glutatión/metabolismo , Hierro/metabolismo , Dominios Proteicos , Sphingomonadaceae/química , Sphingomonadaceae/genética
2.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138444

RESUMEN

Nitrogenases have the remarkable ability to catalyze the reduction of dinitrogen to ammonia under physiological conditions. How does this happen? The current view of the nitrogenase mechanism focuses on the role of hydrides, the binding of dinitrogen in a reductive elimination process coupled to loss of dihydrogen, and the binding of substrates to a binuclear site on the active site cofactor. This review focuses on recent experimental characterizations of turnover relevant forms of the enzyme determined by cryo-electron microscopy and other approaches, and comparison of these forms to the resting state enzyme and the broader family of iron sulfur clusters. Emerging themes include the following: (i) The obligatory coupling of protein and electron transfers does not occur in synthetic and small-molecule iron-sulfur clusters. The coupling of these processes in nitrogenase suggests that they may involve unique features of the cofactor, such as hydride formation on the trigonal prismatic arrangement of irons, protonation of belt sulfurs, and/or protonation of the interstitial carbon. (ii) Both the active site cofactor and protein are dynamic under turnover conditions; the changes are such that more highly reduced forms may differ in key ways from the resting-state structure. Homocitrate appears to play a key role in coupling cofactor and protein dynamics. (iii) Structural asymmetries are observed in nitrogenase under turnover-relevant conditions by cryo-electron microscopy, although the mechanistic relevance of these states (such as half-of-sites reactivity) remains to be established.


Asunto(s)
Hidrógeno , Nitrogenasa , Nitrogenasa/metabolismo , Microscopía por Crioelectrón , Hierro , Azufre/química , Oxidación-Reducción
3.
J Biol Chem ; 297(4): 101087, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416234

RESUMEN

All extant life forms require trace transition metals (e.g., Fe2/3+, Cu1/2+, and Mn2+) to survive. However, as these are environmentally scarce, organisms have evolved sophisticated metal uptake machineries. In bacteria, high-affinity import of transition metals is predominantly mediated by ABC transporters. During bacterial infection, sequestration of metal by the host further limits the availability of these ions, and accordingly, bacterial ABC transporters (importers) of metals are key virulence determinants. However, the structure-function relationships of these metal transporters have not been fully elucidated. Here, we used metal-sensitivity assays, advanced structural modeling, and enzymatic assays to study the ABC transporter MntBC-A, a virulence determinant of the bacterial human pathogen Bacillus anthracis. We find that despite its broad metal-recognition profile, MntBC-A imports only manganese, whereas zinc can function as a high-affinity inhibitor of MntBC-A. Computational analysis shows that the transmembrane metal permeation pathway is lined with six titratable residues that can coordinate the positively charged metal, and mutagenesis studies show that they are essential for manganese transport. Modeling suggests that access to these titratable residues is blocked by a ladder of hydrophobic residues, and ATP-driven conformational changes open and close this hydrophobic seal to permit metal binding and release. The conservation of this arrangement of titratable and hydrophobic residues among ABC transporters of transition metals suggests a common mechanism. These findings advance our understanding of transmembrane metal recognition and permeation and may aid the design and development of novel antibacterial agents.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Bacillus anthracis/química , Proteínas Bacterianas/química , Manganeso/química , Modelos Moleculares , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacillus anthracis/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico Activo , Interacciones Hidrofóbicas e Hidrofílicas , Manganeso/metabolismo
4.
J Am Chem Soc ; 144(46): 21125-21135, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346899

RESUMEN

The mechanism of nitrogenase, the enzyme responsible for biological nitrogen fixation, has been of great interest for understanding the catalytic strategy utilized to reduce dinitrogen to ammonia under ambient temperatures and pressures. The reduction mechanism of nitrogenase is generally envisioned as involving multiple cycles of electron and proton transfers, with the known substrates requiring at least two cycles. Solvent kinetic isotope effect experiments, in which changes of reaction rates or product distribution are measured upon enrichment of solvent with heavy atom isotopes, have been valuable for deciphering the mechanism of complex enzymatic reactions involving proton or hydrogen transfer. We report the distribution of ethylene, dihydrogen, and methane isotopologue products measured from nitrogenase-catalyzed reductions of acetylene, protons, and cyanide, respectively, performed in varying levels of deuterium enrichment of the solvent. As has been noted previously, the total rate of product formation by nitrogenase is largely insensitive to the presence of D2O in the solvent. Nevertheless, the incorporation of H/D into products can be measured for these substrates that reflect solvent isotope effects on hydrogen atom transfers that are faster than the overall rate-determining step for nitrogenase. From these data, a minimal isotope effect is observed for acetylene reduction (1.4 ± 0.05), while the isotope effects for hydrogen and methane evolution are significantly higher at 4.2 ± 0.1 and 4.4 ± 0.1, respectively. These results indicate that there are pronounced differences in the sensitivity to isotopic substitution of the hydrogen atom transfer steps associated with the reduction of these substrates by nitrogenase.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Nitrogenasa/metabolismo , Molibdoferredoxina/metabolismo , Deuterio/metabolismo , Protones , Solventes , Oxidación-Reducción , Acetileno , Hidrógeno/metabolismo , Metano/metabolismo
5.
Chem Rev ; 120(12): 4969-5004, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32538623

RESUMEN

The reduction of dinitrogen to ammonia by nitrogenase reflects a complex choreography involving two component proteins, MgATP and reductant. At center stage of this process resides the active site cofactor, a complex metallocluster organized around a trigonal prismatic arrangement of iron sites surrounding an interstitial carbon. As a consequence of the choreography, electrons and protons are delivered to the active site for transfer to the bound N2. While the detailed mechanism for the substrate reduction remains enigmatic, recent developments highlight the role of hydrides and the privileged role for two irons of the trigonal prism in the binding of exogenous ligands. Outstanding questions concern the precise nature of the intermediates between N2 and NH3, and whether the cofactor undergoes significant rearrangement during turnover; resolution of these issues will require the convergence of biochemistry, structure, spectroscopy, computation, and model chemistry.


Asunto(s)
Nitrogenasa/química , Amoníaco/química , Amoníaco/metabolismo , Cristalización , Metales Pesados/química , Metales Pesados/metabolismo , Modelos Moleculares , Nitrógeno/química , Nitrógeno/metabolismo , Nitrogenasa/metabolismo , Conformación Proteica
6.
Nat Rev Mol Cell Biol ; 10(3): 218-27, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19234479

RESUMEN

ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of integral membrane proteins that are responsible for the ATP-powered translocation of many substrates across membranes. The highly conserved ABC domains of ABC transporters provide the nucleotide-dependent engine that drives transport. By contrast, the transmembrane domains that create the translocation pathway are more variable. Recent structural advances with prokaryotic ABC transporters have provided a qualitative molecular framework for deciphering the transport cycle. An important goal is to develop quantitative models that detail the kinetic and molecular mechanisms by which ABC transporters couple the binding and hydrolysis of ATP to substrate translocation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Sitios de Unión , Transporte Biológico/genética , Dimerización , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
7.
Proc Natl Acad Sci U S A ; 115(45): E10596-E10604, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352853

RESUMEN

The Escherichia coli methionine ABC transporter MetNI exhibits both high-affinity transport toward l-methionine and broad specificity toward methionine derivatives, including d-methionine. In this work, we characterize the transport of d-methionine derivatives by the MetNI transporter. Unexpectedly, the N229A substrate-binding deficient variant of the cognate binding protein MetQ was found to support high MetNI transport activity toward d-selenomethionine. We determined the crystal structure at 2.95 Šresolution of the ATPγS-bound MetNIQ complex in the outward-facing conformation with the N229A apo MetQ variant. This structure revealed conformational changes in MetQ providing substrate access through the binding protein to the transmembrane translocation pathway. MetQ likely mediates uptake of methionine derivatives through two mechanisms: in the methionine-bound form delivering substrate from the periplasm to the transporter (the canonical mechanism) and in the apo form by facilitating ligand binding when complexed to the transporter (the noncanonical mechanism). This dual role for substrate-binding proteins is proposed to provide a kinetic strategy for ABC transporters to transport both high- and low-affinity substrates present in a physiological concentration range.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Metionina/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Escherichia coli/genética , Cinética , Ligandos , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenometionina/metabolismo , Especificidad por Sustrato
8.
Angew Chem Int Ed Engl ; 60(11): 5704-5707, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33320413

RESUMEN

As an approach towards unraveling the nitrogenase mechanism, we have studied the binding of CO to the active-site FeMo-cofactor. CO is not only an inhibitor of nitrogenase, but it is also a substrate, undergoing reduction to hydrocarbons (Fischer-Tropsch-type chemistry). The C-C bond forming capabilities of nitrogenase suggest that multiple CO or CO-derived ligands bind to the active site. Herein, we report a crystal structure with two CO ligands coordinated to the FeMo-cofactor of the molybdenum nitrogenase at 1.33 Šresolution. In addition to the previously observed bridging CO ligand between Fe2 and Fe6 of the FeMo-cofactor, a new ligand binding mode is revealed through a second CO ligand coordinated terminally to Fe6. While the relevance of this state to nitrogenase-catalyzed reactions remains to be established, it highlights the privileged roles for Fe2 and Fe6 in ligand binding, with multiple coordination modes available depending on the ligand and reaction conditions.


Asunto(s)
Monóxido de Carbono/metabolismo , Nitrogenasa/metabolismo , Sitios de Unión , Monóxido de Carbono/química , Ligandos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Nitrogenasa/química
9.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34042234

RESUMEN

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Asunto(s)
Materiales Biomiméticos/química , Hidrocarburos Aromáticos con Puentes/química , Complejos de Coordinación/química , Protones , Materiales Biomiméticos/síntesis química , Hidrocarburos Aromáticos con Puentes/síntesis química , Calcio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Manganeso/química , Estructura Molecular , Complejo de Proteína del Fotosistema II/química , Itrio/química
10.
Nature ; 514(7523): 518-22, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25132545

RESUMEN

Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2·Pi) of ZntA from Shigella sonnei, determined at 3.2 Å and 2.7 Å resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2·Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Shigella/enzimología , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cadmio/metabolismo , ATPasas Transportadoras de Calcio/química , Secuencia Conservada , Cristalografía por Rayos X , Plomo/metabolismo , Modelos Moleculares , Fosforilación , Proteolípidos/química , Proteolípidos/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , Zinc/metabolismo
11.
J Am Chem Soc ; 141(34): 13676-13688, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31356071

RESUMEN

The size and complexity of Mo-dependent nitrogenase, a multicomponent enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe-Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron-sulfur clusters. Supported by experimental small molecule model data in combination with time dependent density functional theory (TDDFT) calculations, the HERFD XAS data is consistent with an assignment of Fe2/Fe6 as an antiferromagnetically coupled diferric pair. HERFD XAS and EXAFS have also been applied to Se-substituted CO-inhibited MoFe protein, demonstrating the ability of these methods to reveal electronic and structural changes that occur upon substrate binding. These results emphasize the utility of Se HERFD XAS and EXAFS for selectively probing the local electronic and geometric structure of FeMoco.


Asunto(s)
Azotobacter vinelandii/química , Proteínas Bacterianas/química , Molibdoferredoxina/química , Electrones , Modelos Moleculares , Conformación Proteica , Selenio/química , Espectroscopía de Absorción de Rayos X/métodos
12.
Angew Chem Int Ed Engl ; 58(12): 3894-3897, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30698901

RESUMEN

The nitrogenase iron protein (Fe-protein) contains an unusual [4Fe:4S] iron-sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13-Å resolution structure for the ADP bound Fe-protein, the highest resolution Fe-protein structure presently determined. In the dithionite-reduced [4Fe:4S]1+ state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe2+ pair. We propose that ATP binding by the Fe-protein promotes an internal redox rearrangement such that the solvent-exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron-protein. In the [4Fe:4S]0 and [4Fe:4S]2+ states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe2+ and valence delocalized Fe2.5+ , respectively.


Asunto(s)
Hierro/química , Oxidorreductasas/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Biocatálisis , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Iones/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Molibdeno/química , Oxidación-Reducción , Oxidorreductasas/química
13.
J Am Chem Soc ; 139(31): 10856-10862, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692802

RESUMEN

Protonated states of the nitrogenase active site are mechanistically significant since substrate reduction is invariably accompanied by proton uptake. We report the low pH characterization by X-ray crystallography and EPR spectroscopy of the nitrogenase molybdenum iron (MoFe) proteins from two phylogenetically distinct nitrogenases (Azotobacter vinelandii, Av, and Clostridium pasteurianum, Cp) at pHs between 4.5 and 8. X-ray data at pHs of 4.5-6 reveal the repositioning of side chains along one side of the FeMo-cofactor, and the corresponding EPR data shows a new S = 3/2 spin system with spectral features similar to a state previously observed during catalytic turnover. The structural changes suggest that FeMo-cofactor belt sulfurs S3A or S5A are potential protonation sites. Notably, the observed structural and electronic low pH changes are correlated and reversible. The detailed structural rearrangements differ between the two MoFe proteins, which may reflect differences in potential protonation sites at the active site among nitrogenase species. These observations emphasize the benefits of investigating multiple nitrogenase species. Our experimental data suggest that reversible protonation of the resting state is likely occurring, and we term this state "E0H+", following the Lowe-Thorneley naming scheme.


Asunto(s)
Nitrogenasa/metabolismo , Protones , Dominio Catalítico , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Nitrogenasa/química
14.
EMBO Rep ; 16(6): 728-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25956886

RESUMEN

Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cobre/metabolismo , Legionella pneumophila/enzimología , Legionella pneumophila/genética , Azufre/metabolismo , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína
15.
Proc Natl Acad Sci U S A ; 111(2): 670-4, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379376

RESUMEN

We demonstrate that membrane proteins and phospholipids can self-assemble into polyhedral arrangements suitable for structural analysis. Using the Escherichia coli mechanosensitive channel of small conductance (MscS) as a model protein, we prepared membrane protein polyhedral nanoparticles (MPPNs) with uniform radii of ∼ 20 nm. Electron cryotomographic analysis established that these MPPNs contain 24 MscS heptamers related by octahedral symmetry. Subsequent single-particle electron cryomicroscopy yielded a reconstruction at ∼ 1-nm resolution, revealing a conformation closely resembling the nonconducting state. The generality of this approach has been addressed by the successful preparation of MPPNs for two unrelated proteins, the mechanosensitive channel of large conductance and the connexon Cx26, using a recently devised microfluidics-based free interface diffusion system. MPPNs provide not only a starting point for the structural analysis of membrane proteins in a phospholipid environment, but their closed surfaces should facilitate studies in the presence of physiological transmembrane gradients, in addition to potential applications as drug delivery carriers or as templates for inorganic nanoparticle formation.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Canales Iónicos/química , Modelos Moleculares , Nanopartículas/química , Conformación Proteica , Microscopía por Crioelectrón , Técnicas Analíticas Microfluídicas
16.
J Biol Chem ; 290(14): 9135-40, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25678706

RESUMEN

The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of D- and L-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by L-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Alostérica , Calorimetría
17.
Biochemistry ; 54(11): 2052-60, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25710326

RESUMEN

In the nitrogenase molybdenum-iron (MoFe) protein, we have identified five potential substrate access pathways from the protein surface to the FeMo-cofactor (the active site) or the P-cluster using experimental structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including those from Klebsiella pneumoniae, were analyzed for the presence of nonwater, small molecules bound to the protein interior. Each pathway is based on identification of plausible routes from buried small molecule binding sites to both the protein surface and a metallocluster. Of these five pathways, two have been previously suggested as substrate access pathways. While the small molecule binding sites are not conserved among the three species of MoFe protein, residues lining the pathways are generally conserved, indicating that the proposed pathways may be accessible in all three species. These observations imply that there is unlikely a unique pathway utilized for substrate access from the protein surface to the active site; however, there may be preferred pathways such as those described here.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Clostridium/enzimología , Klebsiella pneumoniae/enzimología , Modelos Moleculares , Molibdoferredoxina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Ligandos , Molibdoferredoxina/química , Presión , Conformación Proteica , Propiedades de Superficie , Xenón/química
18.
Pflugers Arch ; 467(1): 15-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24859800

RESUMEN

Mechanosensitive channels are integral components for the response of bacteria to osmotic shock. The mechanosensitive channel of large conductance (MscL) responds to extreme turgor pressure increase that would otherwise lyse the cellular membrane. MscL has been studied as a model mechanosensitive channel using both structural and functional approaches. We will summarize the structural data and discuss outstanding questions surrounding the gating mechanism of this homo-oligomeric channel that has ~3 nS conductance. Specifically, we will explore the following: (1) the variability in oligomeric state that has been observed, (2) the open pore size measurements, and (3) the role of the C-terminal coiled coil domain for channel function. The oligomeric state of MscL has been characterized using various techniques, with a pentamer being the predominant form; however, the presence of mixtures of oligomers in the membrane is still uncertain. In the absence of structural data for the open state of MscL, the diameter of the open state pore has been estimated by several different approaches, leading to a current estimate between 25 and 30 Å. While the C-terminal domain is highly conserved among MscL homologues, it is not required for activity in vivo or in vitro. This domain is likely to remain intact during the gating transition and perform a filtering function that retains valuable osmolytes in the cytosol. Overall, studies of MscL have provided significant insight to the field, and serve as a paradigm for the analysis of non-homologous, eukaryotic mechanosensitive channel proteins.


Asunto(s)
Membrana Celular/química , Membrana Celular/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Canales Iónicos/química , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Osmorregulación/fisiología , Membrana Celular/ultraestructura , Simulación por Computador , Proteínas de Escherichia coli/ultraestructura , Activación del Canal Iónico/fisiología , Canales Iónicos/ultraestructura , Fluidez de la Membrana/fisiología , Modelos Químicos , Modelos Moleculares , Porosidad , Relación Estructura-Actividad
19.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 274-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664737

RESUMEN

The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Šresolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the ß-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.


Asunto(s)
Azotobacter vinelandii/química , Proteínas Bacterianas/química , Clostridium/química , Molibdoferredoxina/química , Sitios de Unión , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química
20.
J Am Chem Soc ; 137(1): 146-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25522159

RESUMEN

The roles of ATP hydrolysis in electron-transfer (ET) reactions of the nitrogenase catalytic cycle remain obscure. Here, we present a new structure of a nitrogenase complex crystallized with MgADP and MgAMPPCP, an ATP analogue. In this structure the two nucleotides are bound asymmetrically by the Fe-protein subunits connected to the two different MoFe-protein subunits. This binding mode suggests that ATP hydrolysis and phosphate release may proceed by a stepwise mechanism. Through the associated Fe-protein conformational changes, a stepwise mechanism is anticipated to prolong the lifetime of the Fe-protein-MoFe-protein complex and, in turn, could orchestrate the sequence of intracomplex ET required for substrate reduction.


Asunto(s)
Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Nitrogenasa/química , Nitrogenasa/metabolismo , Adenosina Trifosfato/análogos & derivados , Hidrólisis , Modelos Moleculares , Estructura Molecular , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Fosfatos/química , Fosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA