RESUMEN
Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.
Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19 , Evolución Molecular , Evasión Inmune/inmunología , Huésped Inmunocomprometido , Fragmentos Fab de Inmunoglobulinas/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
While Merkel cell polyomavirus (MCPyV or MCV) is an abundant virus frequently shed from healthy skin, it is one of the most lethal tumor viruses in immunocompromised individuals, highlighting the crucial role of host immunity in controlling MCPyV oncogenic potential. Despite its prevalence, very little is known about how MCPyV interfaces with the host immune response to maintain asymptomatic persistent infection and how inadequate control of MCPyV infection triggers MCC tumorigenesis. In this study, we discovered that the MCPyV protein, known as the Alternative Large Tumor Open Reading Frame (ALTO), also referred to as middle T, effectively primes and activates the STING signaling pathway. It recruits Src kinase into the complex of STING downstream kinase TBK1 to trigger its autophosphorylation, which ultimately activates the subsequent antiviral immune response. Combining single-cell analysis with both loss- and gain-of-function studies of MCPyV infection, we demonstrated that the activity of ALTO leads to a decrease in MCPyV replication. Thus, we have identified ALTO as a crucial viral factor that modulates the STING-TBK1 pathway, creating a negative feedback loop that limits viral infection and maintains a delicate balance with the host immune system. Our study reveals a novel mechanism by which a tumorigenic virus-encoded protein can link Src function in cell proliferation to the activation of innate immune signaling, thereby controlling viral spread, and sustaining persistent infection. Our previous findings suggest that STING also functions as a tumor suppressor in MCPyV-driven oncogenesis. This research provides a foundation for investigating how disruptions in the finely tuned virus-host balance, maintained by STING, could alter the fate of MCPyV infection, potentially encouraging malignancy.
Asunto(s)
Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Proteínas Serina-Treonina Quinasas , Infecciones Tumorales por Virus , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Polyomavirus/metabolismo , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/virología , Humanos , Infecciones Tumorales por Virus/metabolismo , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología , Carcinoma de Células de Merkel/virología , Carcinoma de Células de Merkel/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Replicación Viral , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/inmunología , AnimalesRESUMEN
BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were nonhospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S-gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- or dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared with single-active mAb treatment, treatment with dual-active mAbs led to faster viral load decline at study days 3 (P < .001) and 7 (P < .01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than with placebo (2.6% vs 0%; P < .001) and were more frequently detected in the setting of single-active compared with dual-active mAb treatment (7.3% vs 1.1%; P < .01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSIONS: Compared with single-active mAb therapy, dual-active mAbs led to similar clinical outcomes but significantly faster viral load decline and a lower risk of emergent resistance.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , Femenino , Masculino , Persona de Mediana Edad , Carga Viral/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Farmacorresistencia Viral , Antivirales/uso terapéutico , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Anciano , Adulto , Quimioterapia CombinadaRESUMEN
Analytic morphomics refers to the accurate measurement of specific biological markers of human body composition in diagnostic medical imaging. The increasing prevalence of disease processes that alter body composition including obesity, cachexia, and sarcopenia has generated interest in specific targeted measurement of these metrics to possibly prevent or reduce negative health outcomes. Typical morphomic measurements include the area and density of muscle, bone, vascular calcification, visceral fat, and subcutaneous fat on a specific validated axial level in the patient's cross-sectional diagnostic imaging. A distinct advantage of these measurements is that they can be made retrospectively and opportunistically with pre-existing datasets. We provide a narrative review of the current state of art in morphomics, but also consider some potential future directions for this exciting field. Imaging based quantitative assessment of body composition has enormous potential across the breadth and scope of modern clinical practice. From risk stratification to treatment planning, and outcome assessment, all can be enhanced with the use of analytic morphomics. Moreover, it is likely that many new opportunities for personalized medicine will emerge as the field evolves. As radiologists, embracing analytic morphomics will enable us to contribute added value in the care of every patient.
Asunto(s)
Composición Corporal , Diagnóstico por Imagen , Humanos , Diagnóstico por Imagen/métodosRESUMEN
Understanding variant-specific differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics may explain differences in transmission efficiency and provide insights on pathogenesis and prevention. We evaluated SARS-CoV-2 kinetics from nasal swabs across multiple variants (Alpha, Delta, Epsilon, Gamma) in placebo recipients of the ACTIV-2/A5401 trial. Delta variant infection led to the highest maximum viral load and shortest time from symptom onset to viral load peak. There were no significant differences in time to viral clearance across the variants. Viral decline was biphasic with first- and second-phase decays having half-lives of 11 hours and 2.5 days, respectively, with differences among variants, especially in the second phase. These results suggest that while variant-specific differences in viral kinetics exist, post-peak viral load all variants appeared to be efficiently cleared by the host. Clinical Trials Registration. NCT04518410.
Asunto(s)
COVID-19 , Humanos , Semivida , Cinética , SARS-CoV-2RESUMEN
We enrolled 7 individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.
Asunto(s)
COVID-19 , Humanos , Tratamiento Farmacológico de COVID-19 , Ritonavir/uso terapéutico , MutaciónRESUMEN
There is limited information on the specific impact of maternal infection with the SARS-CoV-2 B.1.617.2 (delta) variant on pregnancy outcomes. We present 2 cases of intrauterine fetal demise and 1 case of severe fetal distress in the setting of maternal infection with delta-variant SARS-CoV-2. In all cases, fetal demise or distress occurred within 14 days of COVID-19 diagnosis. Evaluation revealed maternal viremia, high nasopharyngeal viral load, evidence of placental infection with delta-variant SARS-CoV-2, and hallmark features of SARS-CoV-2 placentitis. We suggest that delta-variant SARS-CoV-2 infection during pregnancy warrants vigilance for placental dysfunction and fetal compromise regardless of disease severity.
Asunto(s)
COVID-19/diagnóstico , Muerte Fetal , Sufrimiento Fetal , Placenta/virología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2 , Adulto , COVID-19/complicaciones , COVID-19/mortalidad , Prueba de COVID-19 , Corioamnionitis , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Embarazo , Complicaciones Infecciosas del Embarazo/diagnósticoRESUMEN
The impact of coronavirus disease 2019 vaccination on viral characteristics of breakthrough infections is unknown. In this prospective cohort study, incidence of severe acute respiratory syndrome coronavirus 2 infection decreased following vaccination. Although asymptomatic positive tests were observed following vaccination, the higher cycle thresholds, repeat negative tests, and inability to culture virus raise questions about their clinical significance.
Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Personal de Salud , Humanos , Incidencia , Estudios Prospectivos , SARS-CoV-2 , VacunaciónRESUMEN
We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.
Asunto(s)
COVID-19/inmunología , Interferón Tipo I/inmunología , Interferón gamma/inmunología , Interferones/inmunología , COVID-19/sangre , Quimiocinas/sangre , Citocinas/sangre , Humanos , Interferón Tipo I/sangre , Interferón Tipo I/genética , Interferón gamma/sangre , Interferón gamma/genética , Interferones/sangre , Leucocitos Mononucleares/inmunología , SARS-CoV-2/aislamiento & purificación , Interferón lambdaRESUMEN
BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.
Asunto(s)
COVID-19 , Carga Viral , Adolescente , COVID-19/diagnóstico , COVID-19/patología , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Pandemias , SARS-CoV-2/genética , Adulto JovenAsunto(s)
COVID-19 , SARS-CoV-2 , Cultivo de Virus , Esparcimiento de Virus , Animales , COVID-19/virología , Chlorocebus aethiops , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus , Células Vero , Cultivo de Virus/métodos , Esparcimiento de Virus/fisiologíaRESUMEN
OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.
Asunto(s)
COVID-19 , Adolescente , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Prueba de COVID-19 , Niño , Preescolar , Comorbilidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Pandemias , Índice de Severidad de la Enfermedad , Carga Viral , Adulto JovenRESUMEN
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Prospectivos , Cinética , Terapia de InmunosupresiónRESUMEN
BACKGROUND: Atrial fibrillation is the most common cardiac arrhythmia and is a major risk factor for stroke, with an incidence rate of 4-5% per year. The use of DOACs is recommended for specific patient populations however the risk of bleeding commonly precludes their use. Left atrial appendage occlusion is a relatively novel procedure recommended for such patients. We set out to analyse the initial success and safety of this procedure in a single site. RESULTS: Twenty patients were included in the study with an average age of 81 years. Seventy percent (n = 14) were male. Ninety percent (n = 18) had a history of major bleeding, an absolute contraindication to anticoagulation. The mean CHADS2VaSc and HASBLED scores were 4.75 and 3.7, respectively. The technical success rate was 95% comparable with existing data. The procedural success rate in our study was 80%. The most frequent complication was cardiac tamponade, occurring in 10% of cases. CONCLUSION: We report lower technical success and procedural success rates in an older population cohort than historically studied, 90% of whom had an absolute contraindication to oral anticoagulation, with higher CHADS2VaSc and HASBLED scores than commonly studied.
Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Masculino , Anciano de 80 o más Años , Femenino , Apéndice Atrial/cirugía , Anticoagulantes/uso terapéutico , Resultado del Tratamiento , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Hemorragia , Fibrilación Atrial/complicaciones , Fibrilación Atrial/epidemiología , Fibrilación Atrial/terapiaRESUMEN
Smoking negatively affects B cell function and immunoglobulin levels, but it is unclear if this immune dysfunction contributes to the risk of severe COVID-19 in smokers. We evaluated binding IgM, IgA and IgG antibodies to spike and receptor binding domain antigens, and used a pseudovirus assay to quantify neutralization titers in a set of 27 patients with severe COVID-19. We found no significant differences between binding and neutralization antibody responses for people with a smoking history and people who never smoked. High plasma viral load, but not antibody titers, was linked to an increased risk of death. Humoral immune dysfunction was not a major driver of severe COVID-19 in smokers.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Fumadores , Anticuerpos Antivirales , Formación de Anticuerpos , Anticuerpos Neutralizantes , Inmunoglobulina MRESUMEN
Early initiation of antiretroviral therapy (ART) alters viral rebound kinetics after analytic treatment interruption (ATI) and may play a role in promoting HIV-1 remission. Autologous neutralizing antibodies (aNAbs) represent a key adaptive immune response in people living with HIV-1. We aimed to investigate the role of aNAbs in shaping post-ATI HIV-1 rebound variants. We performed single-genome amplification of HIV-1 env from pre-ART and post-ATI plasma samples of 12 individuals who initiated ART early after infection. aNAb activity was quantified using pseudoviruses derived from the most common plasma variant, and the serum dilution that inhibited 50% of viral infections was determined. aNAb responses matured while participants were on suppressive ART, because on-ART plasma and purified immunoglobulin G (IgG) demonstrated improved neutralizing activity against pre-ART HIV-1 strains when compared with pre-ART plasma or purified IgG. Post-ATI aNAb responses exerted selective pressure on the rebounding viruses, because the post-ATI HIV-1 strains were more resistant to post-ATI plasma neutralization compared with the pre-ART virus. Several pre-ATI features distinguished post-treatment controllers from noncontrollers, including an infecting HIV-1 sequence that was more similar to consensus HIV-1 subtype B, more restricted proviral diversity, and a stronger aNAb response. Post-treatment control was also associated with the evolution of distinct N-glycosylation profiles in the HIV-1 envelope. In summary, aNAb responses appeared to mature after early initiation of ART and applied selective pressure on rebounding viruses. The combination of aNAb activity with select HIV-1 sequence and reservoir features identified individuals with a greater chance of post-treatment control.
Asunto(s)
Anticuerpos Neutralizantes , Infecciones por VIH , Humanos , Anticuerpos Neutralizantes/uso terapéutico , Antirretrovirales/uso terapéutico , Provirus , Inmunoglobulina G , Anticuerpos Anti-VIH , Carga ViralRESUMEN
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged SARS-CoV-2 infection, but the immune defects that predispose to persistent COVID-19 remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median time to nasal viral RNA and culture clearance in the severe hematologic malignancy/transplant group (S-HT) were 72 and 40 days, respectively, which were significantly longer than clearance rates in the severe autoimmune/B-cell deficient (S-A), non-severe, and non-immunocompromised groups (P<0.001). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing antiviral treatment resistance. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral, while only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.