Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(3): 427-443, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160435

RESUMEN

MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.


Asunto(s)
Actinas , Cadenas Pesadas de Miosina , Animales , Humanos , Ratones , Actinas/metabolismo , Mamíferos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Músculos Oculomotores/metabolismo
2.
J Physiol ; 602(2): 355-372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165402

RESUMEN

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Anciano de 80 o más Años , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Envejecimiento/fisiología , Extremidad Inferior , ADN Mitocondrial
3.
Artículo en Inglés | MEDLINE | ID: mdl-38353871

RESUMEN

The European Society for Muscle Research (ESMR) started in 1971 as "European Muscle Club" in a joint initiative of Marcus Schaub, Eduard Jenny and Rudolf Billeter (Zurich), Caspar Rüegg (Heidelberg), Jean Légér (Montpellier), Bernard Swynghedauw (Paris), George Maréchal (Brussels), Gabriel Hamoir (Liège), and Endre Biró (Budapest). Since 1972, local organizers took care of muscle conferences held yearly in different European countries and in Israel in 1987. One of the goals was to establish contacts and collaborations between scientists on both sides of the Iron Curtain. Starting as an informal club, enthusiastically guided by Marcus Schaub as secretary (1971-1995) and later by Ger Stienen (1996-2005), Anders Arner (2006-2017) and Wolfgang Linke (2018-), the ESMR meetings steered international collaborations. The meetings witnessed the remarkable advancement of the insight in skeletal, smooth and cardiac muscle structure and function. In the five decades, the thin and thick filament structure has been resolved to the atomic level, the mechanism of acto-myosin energy transduction and force generation as well as its regulation have been elucidated. The molecular basis of striated and smooth muscle diversity has been found in the existence of multiple protein isoforms. The transcriptional, translational and post-translational regulations which give rise to adaptive responses of muscle tissue have been revealed. Many new players entered the field, such as titin, the ryanodine receptor and several signalling factors. Substantial progress has also been made in the identification of the pathogenesis of many hereditary muscle diseases such as Duchenne MuscularDystrophy and Hypertrophic Cardiac Myopathies.

4.
BMC Public Health ; 23(1): 917, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208654

RESUMEN

BACKGROUD: Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. METHODS: The 52 active older adults (22 men and 30 women, mean age: 68.4 ± 5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants' overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. RESULTS: In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p < .001), muscle mass index (-5.4%; p < .001), and physical performance measured with gait speed (-28.6%; p < .001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p = .030 and - 48.5%; p < .001, respectively). CONCLUSIONS: Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. TRIAL REGISTRATION: The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531.


Asunto(s)
Sarcopenia , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Estudios Longitudinales , Fuerza de la Mano/fisiología , Fuerza Muscular , Músculo Esquelético , Prevalencia
5.
J Physiol ; 600(21): 4731-4751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36071599

RESUMEN

Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.


Asunto(s)
Contracción Muscular , Transcriptoma , Masculino , Humanos , Contracción Muscular/fisiología , Unión Neuromuscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Electromiografía
6.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163243

RESUMEN

Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.


Asunto(s)
Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Sarcómeros/metabolismo , Animales , Ancirinas/metabolismo , Conectina/metabolismo , Conectina/fisiología , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Sarcómeros/fisiología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
7.
J Physiol ; 599(12): 3037-3061, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881176

RESUMEN

KEY POINTS: Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Humanos , Contracción Muscular , Músculo Esquelético , Unión Neuromuscular , Músculo Cuádriceps
8.
J Muscle Res Cell Motil ; 42(2): 281-289, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32034582

RESUMEN

Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Cafeína/farmacología , Calcio/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Rianodina , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo
9.
Int J Mol Sci ; 21(11)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498422

RESUMEN

Aging of human skeletal muscles is associated with increased passive stiffness, but it is still debated whether muscle fibers or extracellular matrix (ECM) are the determinants of such change. To answer this question, we compared the passive stress generated by elongation of fibers alone and arranged in small bundles in young healthy (Y: 21 years) and elderly (E: 67 years) subjects. The physiological range of sarcomere length (SL) 2.5-3.3 µm was explored. The area of ECM between muscle fibers was determined on transversal sections with picrosirius red, a staining specific for collagen fibers. The passive tension of fiber bundles was significantly higher in E compared to Y at all SL. However, the resistance to elongation of fibers alone was not different between the two groups, while the ECM contribution was significantly increased in E compared to Y. The proportion of muscle area occupied by ECM increased from 3.3% in Y to 8.2% in E. When the contribution of ECM to bundle tension was normalized to the fraction of area occupied by ECM, the difference disappeared. We conclude that, in human skeletal muscles, the age-related reduced compliance is due to an increased stiffness of ECM, mainly caused by collagen accumulation.


Asunto(s)
Envejecimiento/patología , Matriz Extracelular/fisiología , Músculo Esquelético/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Colágeno/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Sarcómeros/metabolismo , Estrés Mecánico , Adulto Joven
10.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486238

RESUMEN

Skeletal muscle aging is accompanied by mass reduction and functional decline, as a result of multiple factors, such as protein expression, morphology of organelles, metabolic equilibria, and neural communication. Skeletal muscles are formed by multiple fibers that express different Myosin Heavy Chains (MyHCs) and have different metabolic properties and different blood supply, with the purpose to adapt their contraction to the functional need. The fine interplay between the different fibers composing a muscle and its architectural organization determine its functional properties. Immunohistochemical and histochemical analyses of the skeletal muscle tissue, besides evidencing morphological characteristics, allow for the precise determination of protein expression and metabolic properties, providing essential information at the single-fiber level. Aiming to gain further knowledge on the influence of aging on skeletal muscles, we investigated the expression of the MyHCs, the Succinate Dehydrogenase (SDH) activity, and the presence of capillaries and Tubular Aggregates (TAs) in the tibialis anterior muscles of physiologically aging C57BL/6J mice aged 8 (adult), 18 (middle aged), and 24 months (old). We observed an increase of type-IIB fast-contracting fibers, an increase of the oxidative capacity of type-IIX and -IIA fibers, a general decrease of the capillarization, and the onset of TAs in type-IIB fibers. These data suggest that aging entails a selective modification of the muscle fiber profiles.


Asunto(s)
Envejecimiento , Metaboloma , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adaptación Fisiológica , Fosfatasa Alcalina/metabolismo , Animales , Capilares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Succinato Deshidrogenasa/metabolismo
11.
Am J Physiol Cell Physiol ; 316(5): C722-C730, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865515

RESUMEN

Electron paramagnetic resonance (EPR), coupled with site-directed spin labeling, has been proven to be a particularly suitable technique to extract information on the fraction of myosin heads strongly bound to actin upon muscle contraction. The approach can be used to investigate possible structural changes occurring in myosin of fiber s altered by diseases and aging. In this work, we labeled myosin at position Cys707, located in the SH1-SH2 helix in the myosin head cleft, with iodoacetamide spin label, a spin label that is sensitive to the reorientational motion of this protein during the ATPase cycle and characterized the biochemical states of the labeled myosin head by means of continuous wave EPR. After checking the sensitivity and the power of the technique on different muscles and species, we investigated whether changes in the fraction of strongly bound myosin heads might explain the contractile alterations observed in atrophic and hypertrophic murine muscles. In both conditions, the difference in contractile force could not be justified simply by the difference in muscle mass. Our results showed that in atrophic muscles the decrease in force generation was attributable to a lower fraction of strongly bound cross bridges during maximal activation. In contrast in hypertrophic muscles, the increase in force generation was likely due to several factors, as pointed out by the comparison of the EPR experiments with the tension measurements on single skinned fibers.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Hipertrofia/patología , Hipertrofia/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Conejos
12.
Proc Natl Acad Sci U S A ; 113(46): 13009-13014, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799519

RESUMEN

We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.


Asunto(s)
Alcaloides/farmacología , Metabolismo Basal/efectos de los fármacos , Benzodioxoles/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Obesidad/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Adenosina Trifosfatasas/metabolismo , Alcaloides/uso terapéutico , Animales , Benzodioxoles/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Fibras Musculares de Contracción Rápida/metabolismo , Obesidad/tratamiento farmacológico , Piperidinas/uso terapéutico , Alcamidas Poliinsaturadas/uso terapéutico , Conejos , Miosinas del Músculo Esquelético/metabolismo , Regulación hacia Arriba
13.
J Physiol ; 596(4): 647-665, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29266264

RESUMEN

KEY POINTS: Disuse in older adults can critically decrease lower limb muscle power, leading to compromised mobility and overall quality of life. We studied how muscle power and its determinants (muscle mass, single muscle fibre properties and motor control) adapted to 2 weeks of disuse and subsequent 2 weeks of physical training in young and older people. Disuse decreased lower limb muscle power in both groups; however, different adaptations in single muscle fibre properties and co-contraction of leg muscles were observed between young and older individuals. Six physical training sessions performed after disuse promoted the recovery of muscle mass and power. However, they were not sufficient to restore muscle power to pre-disuse values in older individuals, suggesting that further countermeasures are required to counteract the disuse-induced loss of muscle power in older adults. ABSTRACT: Disuse-induced loss of muscle power can be detrimental in older individuals, seriously impairing functional capacity. In this study, we examined the changes in maximal explosive power (MEP) of lower limbs induced by a 14-day disuse (bed-rest, BR) and a subsequent 14-day retraining, to assess whether the impact of disuse was greater in older than in young men, and to analyse the causes of such adaptations. Sixteen older adults (Old: 55-65 years) and seven Young (18-30 years) individuals participated in this study. In a subgroup of eight Old subjects, countermeasures based on cognitive training and protein supplementation were applied. MEP was measured with an explosive ergometer, muscle mass was determined by magnetic resonance, motor control was studied by EMG, and single muscle fibres were analysed in vastus lateralis biopsy samples. MEP was ∼33% lower in Old than in Young individuals, and remained significantly lower (-19%) when normalized by muscle volume. BR significantly affected MEP in Old (-15%) but not in Young. Retraining tended to increase MEP; however, this intervention was not sufficient to restore pre-BR values in Old. Ankle co-contraction increased after BR in Old only, and remained elevated after retraining (+30%). Significant atrophy occurred in slow fibres in Old, and in fast fibres in Young. After retraining, the recovery of muscle fibre thickness was partial. The proposed countermeasures were not sufficient to affect muscle mass and power. The greater impact of disuse and smaller retraining-induced recovery observed in Old highlight the importance of designing suitable rehabilitation protocols for older individuals.


Asunto(s)
Extremidad Inferior/fisiología , Fuerza Muscular , Músculo Esquelético/fisiología , Calidad de Vida , Entrenamiento de Fuerza , Adulto , Reposo en Cama , Ejercicio Físico , Humanos , Inmovilización , Masculino , Persona de Mediana Edad , Recuperación de la Función , Adulto Joven
14.
Physiol Rev ; 91(4): 1447-531, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22013216

RESUMEN

Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.


Asunto(s)
Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Potenciales de Acción/fisiología , Animales , Metabolismo Energético/fisiología , Humanos , Contracción Muscular/fisiología , Músculo Esquelético/inervación , Regeneración/fisiología , Transducción de Señal/fisiología , Especificidad de la Especie
15.
FASEB J ; 31(8): 3649-3662, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28465322

RESUMEN

In humans, hyperthermic episodes can be triggered by halogenated anesthetics [malignant hyperthermia (MH) susceptibility] and by high temperature [environmental heat stroke (HS)]. Correlation between MH susceptibility and HS is supported by extensive work in mouse models that carry a mutation in ryanodine receptor type-1 (RYR1Y522S/WT) and calsequestrin-1 knockout (CASQ1-null), 2 proteins that control Ca2+ release in skeletal muscle. As overheating episodes in humans have also been described during exertion, here we subjected RYR1Y522S/WT and CASQ1-null mice to an exertional-stress protocol (incremental running on a treadmill at 34°C and 40% humidity). The mortality rate was 80 and 78.6% in RYR1Y522S/WT and CASQ1-null mice, respectively, vs. 0% in wild-type mice. Lethal crises were characterized by hyperthermia and rhabdomyolysis, classic features of MH episodes. Of importance, pretreatment with azumolene, an analog of the drug used in humans to treat MH crises, reduced mortality to 0 and 12.5% in RYR1Y522S/WT and CASQ1-null mice, respectively, thanks to a striking reduction of hyperthermia and rhabdomyolysis. At the molecular level, azumolene strongly prevented Ca2+-dependent activation of calpains and NF-κB by lowering myoplasmic Ca2+ concentration and nitro-oxidative stress, parameters that were elevated in RYR1Y522S/WT and CASQ1-null mice. These results suggest that common molecular mechanisms underlie MH crises and exertional HS in mice.-Michelucci, A., Paolini, C., Boncompagni, S., Canato, M., Reggiani, C., Protasi, F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Hipertermia Maligna/patología , Condicionamiento Físico Animal , Esfuerzo Físico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Cafeína/farmacología , Proteínas de Unión al Calcio/genética , Calsecuestrina , Estimulación Eléctrica , Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Hipertermia Maligna/genética , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Rabdomiólisis , Canal Liberador de Calcio Receptor de Rianodina/genética
16.
Exerc Sport Sci Rev ; 46(3): 188-194, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29672349

RESUMEN

Although skeletal muscle function is diminished with advanced age, single muscle fiber function seems to be preserved. Therefore, this review examines the hypothesis that the skeletal muscle fiber, per se, is not the predominant factor responsible for the reduction in force-generating capacity in the oldest-old, but, rather, is attributable to a combination of factors external to the muscle fibers.


Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/fisiología , Anciano de 80 o más Años , Humanos , Neuronas Motoras/fisiología , Contracción Muscular , Fuerza Muscular
17.
Hum Mutat ; 38(12): 1761-1773, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895244

RESUMEN

Here, we report the identification of three novel missense mutations in the calsequestrin-1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+ -dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+ -dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Variación Genética , Proteínas Mitocondriales/genética , Miopatías Estructurales Congénitas/genética , Adulto , Anciano , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutación Missense , Multimerización de Proteína , Proteolisis , Proteínas Recombinantes , Alineación de Secuencia , Imagen de Lapso de Tiempo , Secuenciación Completa del Genoma
18.
J Physiol ; 595(4): 1143-1158, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27767211

RESUMEN

KEY POINTS: Muscle atrophy is a debilitating condition that affects a high percentage of the population with a negative impact on quality of life. Dissecting the molecular level of the atrophy process, and the similarities/dissimilarities among different catabolic conditions, is a necessary step for designing specific countermeasures to attenuate/prevent muscle loss. The FoxO family transcription factors represent one of the most important regulators of atrophy programme stimulating the expression of many atrophy-related genes. The findings of the present study clearly indicate that the signalling network controlling the atrophy programme is specific for each catabolic condition. ABSTRACT: Muscle atrophy is a complex process that is in common with many different catabolic diseases including disuse/inactivity and ageing. The signalling pathways that control the atrophy programme in the different disuse/inactivity conditions have not yet been completely dissected. The inhibition of FoxO is considered to only partially spare muscle mass after denervation. The present study aimed: (i) to determine the involvement of FoxOs in hindlimb suspension disuse model; (ii) to define whether the molecular events of protein breakdown are shared among different unloaded muscles; and finally (iii) to compare the data obtained in this model with another model of inactivity such as denervation. Both wild-type and muscle-specific FoxO1,3,4 knockout (FoxO1,3,4-/- ) mice were unloaded for 3 and 14 days and muscles were characterized by functional, morphological, biochemical and molecular assays. The data obtained show that FoxOs are required for muscle loss and force drop during unloading. Moreover, we found that FoxO-dependent atrogenes vary in different unloaded muscles and that they diverge from denervation. The findings of the present study clearly indicate that the signalling network that controls the atrophy programme is specific for each catabolic condition.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Atrofia Muscular/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Suspensión Trasera/efectos adversos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/etiología
19.
EMBO Rep ; 16(3): 387-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25643707

RESUMEN

Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity.


Asunto(s)
Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteoma/genética , Proteómica/métodos , Animales , Cromatografía Liquida , Biología Computacional/métodos , Inmunohistoquímica , Espectrometría de Masas , Ratones , Proteoma/metabolismo
20.
Anal Bioanal Chem ; 409(8): 2143-2153, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28078418

RESUMEN

Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method. Graphical Abstract Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/análisis , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA