Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 17(8): e1009259, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383741

RESUMEN

In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid ß-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state. By a modular kinetic approach we traced the origin and causes of the bistability back to the distributive kinetics and the conservation of CoA, in particular in the last rounds of the ß-oxidation. We then extended the model to investigate various interventions that may confer health benefits by activating the pathway, including (i) activation of the last enzyme MCKAT via its endogenous regulator p46-SHC protein, (ii) addition of a thioesterase (an acyl-CoA hydrolysing enzyme) as a safety valve, and (iii) concomitant activation of a number of upstream and downstream enzymes by short-chain fatty-acids (SCFA), metabolites that are produced from nutritional fibers in the gut. A high concentration of SCFAs, thioesterase activity, and inhibition of the p46Shc protein led to a disappearance of the bistability, leaving only the high-flux state. A better understanding of the switch behavior of the mitochondrial fatty-acid oxidation process between a low- and a high-flux state may lead to dietary and pharmacological intervention in the treatment or prevention of obesity and or non-alcoholic fatty-liver disease.


Asunto(s)
Ácidos Grasos/metabolismo , Modelos Biológicos , Acetil-CoA C-Aciltransferasa/antagonistas & inhibidores , Acetil-CoA C-Aciltransferasa/metabolismo , Animales , Biología Computacional , Simulación por Computador , Estabilidad de Enzimas , Ácidos Grasos/química , Humanos , Cinética , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo
2.
BMC Biol ; 19(1): 154, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330275

RESUMEN

BACKGROUND: The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). RESULTS: As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial ß-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most ß-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. CONCLUSION: We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.


Asunto(s)
Resistencia a la Insulina , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Lípidos , Ratones , Músculo Esquelético/metabolismo
3.
Anal Chem ; 93(23): 8248-8256, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34060804

RESUMEN

13C-isotope tracing is a frequently employed approach to study metabolic pathway activity. When combined with the subsequent quantification of absolute metabolite concentrations, this enables detailed characterization of the metabolome in biological specimens and facilitates computational time-resolved flux quantification. Classically, a 13C-isotopically labeled sample is required to quantify 13C-isotope enrichments and a second unlabeled sample for the quantification of metabolite concentrations. The rationale for a second unlabeled sample is that the current methods for metabolite quantification rely mostly on isotope dilution mass spectrometry (IDMS) and thus isotopically labeled internal standards are added to the unlabeled sample. This excludes the absolute quantification of metabolite concentrations in 13C-isotopically labeled samples. To address this issue, we have developed and validated a new strategy using an unlabeled internal standard to simultaneously quantify metabolite concentrations and 13C-isotope enrichments in a single 13C-labeled sample based on gas chromatography-mass spectrometry (GC/MS). The method was optimized for amino acids and citric acid cycle intermediates and was shown to have high analytical precision and accuracy. Metabolite concentrations could be quantified in small tissue samples (≥20 mg). Also, we applied the method on 13C-isotopically labeled mammalian cells treated with and without a metabolic inhibitor. We proved that we can quantify absolute metabolite concentrations and 13C-isotope enrichments in a single 13C-isotopically labeled sample.


Asunto(s)
Aminoácidos , Carbono , Animales , Isótopos de Carbono , Cromatografía de Gases y Espectrometría de Masas , Marcaje Isotópico , Espectrometría de Masas
4.
J Inherit Metab Dis ; 44(4): 926-938, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33543789

RESUMEN

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Asunto(s)
Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/farmacocinética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Acil-CoA Deshidrogenasa/genética , Administración Oral , Animales , Cromatografía Liquida , Humanos , Masculino , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem
5.
J Inherit Metab Dis ; 44(4): 879-892, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33739445

RESUMEN

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.


Asunto(s)
Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hipertrigliceridemia/etiología , Hipoglucemia/etiología , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Hígado Graso/etiología , Femenino , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Humanos , Hipertrigliceridemia/prevención & control , Hipoglucemia/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Persona de Mediana Edad
6.
Hepatology ; 66(6): 2042-2054, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28727166

RESUMEN

It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc-/- mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc-/- mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc-/- mice. It also showed increased glycogen phosphorylase flux in L-G6pc-/- mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc-/- mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. CONCLUSION: Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology 2017;66:2042-2054).


Asunto(s)
Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Animales , Modelos Animales de Enfermedad , Galactosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glicerol/metabolismo , Masculino , Ratones , alfa-Glucosidasas/metabolismo
7.
PLoS Comput Biol ; 13(4): e1005461, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28369071

RESUMEN

Mitochondrial fatty-acid beta-oxidation (mFAO) plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored. Repetitive cycles of reversible reactions, each cycle shortening the fatty acid by two carbon atoms, evoke competition between intermediates of different chain lengths for a common set of 'promiscuous' enzymes (enzymes with activity towards multiple substrates). In our validated kinetic model of the pathway, substrate overload causes a steep and detrimental flux decline. Here, we unravel the underlying mechanism and the role of enzyme promiscuity in it. Comparison of alternative model versions elucidated the role of promiscuity of individual enzymes. Promiscuity of the last enzyme of the pathway, medium-chain ketoacyl-CoA thiolase (MCKAT), was both necessary and sufficient to elicit the flux decline. Subsequently, Metabolic Control Analysis revealed that MCKAT had insufficient capacity to cope with high substrate influx. Next, we quantified the internal metabolic regulation, revealing a vicious cycle around MCKAT. Upon substrate overload, MCKAT's ketoacyl-CoA substrates started to accumulate. The unfavourable equilibrium constant of the preceding enzyme, medium/short-chain hydroxyacyl-CoA dehydrogenase, worked as an amplifier, leading to accumulation of upstream CoA esters, including acyl-CoA esters. These acyl-CoA esters are at the same time products of MCKAT and inhibited its already low activity further. Finally, the accumulation of CoA esters led to a sequestration of free CoA. CoA being a cofactor for MCKAT, its sequestration limited the MCKAT activity even further, thus completing the vicious cycle. Since CoA is also a substrate for distant enzymes, it efficiently communicated the 'traffic jam' at MCKAT to the entire pathway. This novel mechanism provides a basis to explore the role of mFAO in disease and elucidate similar principles in other pathways of lipid metabolism.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas/fisiología , Acetil-CoA C-Aciltransferasa/fisiología , Biología Computacional , Simulación por Computador , Cinética , Oxidación-Reducción
8.
Anal Bioanal Chem ; 410(23): 5859-5870, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29968103

RESUMEN

Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the experimental procedure. By using an untargeted lipidomics approach, we explored the differences/similarities between the most commonly used two-phase extraction systems (Folch, Bligh and Dyer, and MTBE) and one of the more recently introduced one-phase extraction systems for lipid analysis based on the MMC solvent mixture (MeOH/MTBE/CHCl3). The four extraction methods were evaluated and thoroughly compared against a pooled extract that qualitatively and quantitatively represents the average of the combined extractions. Our results show that the lipid profile obtained with the MMC system displayed the highest similarity to the pooled extract, indicating that it was most representative of the lipidome in the original sample. Furthermore, it showed better extraction efficiencies for moderate and highly apolar lipid species in comparison with the Folch, Bligh and Dyer, and MTBE extraction systems. Finally, the technical simplicity of the MMC procedure makes this solvent system highly suitable for automated, untargeted lipidomics analysis.


Asunto(s)
Fraccionamiento Químico/métodos , Lípidos/sangre , Lípidos/aislamiento & purificación , Transición de Fase , Cromatografía Líquida de Alta Presión/métodos , Humanos , Lípidos/análisis , Espectrometría de Masas/métodos , Metabolómica/métodos , Análisis Multivariante
9.
Nat Chem Biol ; 11(10): 784-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322826

RESUMEN

The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A/biosíntesis , Drosophila/metabolismo , Panteteína/análogos & derivados , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular , Coenzima A/sangre , Coenzima A/farmacología , Coenzima A Ligasas/metabolismo , Drosophila/citología , Drosophila/crecimiento & desarrollo , Femenino , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones Endogámicos C57BL , Panteteína/sangre , Panteteína/metabolismo , Panteteína/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
10.
BMC Biol ; 14(1): 107, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927213

RESUMEN

BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients' metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo Lipídico/genética , Metabolismo de los Lípidos/genética , Mitocondrias/metabolismo , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Biología Computacional , Simulación por Computador , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Errores Innatos del Metabolismo Lipídico/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Proteómica , Especificidad por Sustrato
11.
J Hepatol ; 65(6): 1198-1208, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27312946

RESUMEN

BACKGROUND & AIMS: Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. METHODS: Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid ß-oxidation pathways. RESULTS: Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several ß-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial ß-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. CONCLUSIONS: Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. LAY SUMMARY: Severe malnutrition in children is associated with metabolic disturbances that are poorly understood. In order to study this further, we developed a malnutrition animal model and found that severe malnutrition leads to an impaired function of liver mitochondria which are essential for energy production and a loss of peroxisomes, which are important for normal liver metabolic function.


Asunto(s)
Desnutrición , Adenosina Trifosfato , Animales , Niño , Hígado Graso , Humanos , Hígado , Mitocondrias , Oxidación-Reducción , Ratas
12.
Hum Mol Genet ; 22(25): 5249-61, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23933733

RESUMEN

The importance of mitochondrial fatty acid ß-oxidation (FAO) as a glucose-sparing process is illustrated by patients with inherited defects in FAO, who may present with life-threatening fasting-induced hypoketotic hypoglycemia. It is unknown why peripheral glucose demand outpaces hepatic gluconeogenesis in these patients. In this study, we have systematically addressed the fasting response in long-chain acyl-CoA dehydrogenase-deficient (LCAD KO) mice. We demonstrate that the fasting-induced hypoglycemia in LCAD KO mice was initiated by an increased glucose requirement in peripheral tissues, leading to rapid hepatic glycogen depletion. Gluconeogenesis did not compensate for the increased glucose demand, which was not due to insufficient hepatic glucogenic capacity but rather caused by a shortage in the supply of glucogenic precursors. This shortage in supply was explained by a suppressed glucose-alanine cycle, decreased branched-chain amino acid metabolism and ultimately impaired protein mobilization. We conclude that during fasting, FAO not only serves to spare glucose but is also indispensable for amino acid metabolism, which is essential for the maintenance of adequate glucose production.


Asunto(s)
Gluconeogénesis/genética , Glucosa/metabolismo , Hipoglucemia/metabolismo , Oxidación-Reducción , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Aminoácidos/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Hipoglucemia/genética , Hipoglucemia/patología , Errores Innatos del Metabolismo Lipídico/metabolismo , Glucógeno Hepático/genética , Glucógeno Hepático/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología
13.
Electrophoresis ; 36(18): 2156-2169, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25959207

RESUMEN

Recent advances in analytical chemistry have set the stage for metabolite profiling to help understand complex molecular processes in physiology. Despite ongoing efforts, there are concerns regarding metabolomics workflows, since it has been shown that internal (enzyme activity, blood contamination, and the dynamic nature of metabolite concentrations) as well as external factors (storage, handling, and analysis method) may affect the metabolome profile. Many metabolites are intrinsically instable, particularly some of those associated with central carbon metabolism. While enzymatic conversions have been studied in great detail, nonenzymatic, chemical conversions received comparatively little attention. This review aims to give an in-depth overview of nonenzymatic energy metabolite degradation/interconversion chemistry focusing on a selected range of metabolites. Special attention will be given to qualitative (degradation pathways) as well as quantitative aspects, that may affect the acquisition of accurate data in the context of metabolomics studies. Problems related to the use of isotopically labeled internal standards hindering the quantitative analysis of common metabolites will be presented with an experimental example. Finally, general conclusions and perspectives are given.

14.
PLoS Comput Biol ; 9(8): e1003186, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966849

RESUMEN

Fatty-acid metabolism plays a key role in acquired and inborn metabolic diseases. To obtain insight into the network dynamics of fatty-acid ß-oxidation, we constructed a detailed computational model of the pathway and subjected it to a fat overload condition. The model contains reversible and saturable enzyme-kinetic equations and experimentally determined parameters for rat-liver enzymes. It was validated by adding palmitoyl CoA or palmitoyl carnitine to isolated rat-liver mitochondria: without refitting of measured parameters, the model correctly predicted the ß-oxidation flux as well as the time profiles of most acyl-carnitine concentrations. Subsequently, we simulated the condition of obesity by increasing the palmitoyl-CoA concentration. At a high concentration of palmitoyl CoA the ß-oxidation became overloaded: the flux dropped and metabolites accumulated. This behavior originated from the competition between acyl CoAs of different chain lengths for a set of acyl-CoA dehydrogenases with overlapping substrate specificity. This effectively induced competitive feedforward inhibition and thereby led to accumulation of CoA-ester intermediates and depletion of free CoA (CoASH). The mitochondrial [NAD⁺]/[NADH] ratio modulated the sensitivity to substrate overload, revealing a tight interplay between regulation of ß-oxidation and mitochondrial respiration.


Asunto(s)
Ácidos Grasos/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Femenino , Cinética , Hígado/enzimología , Hígado/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , NAD/metabolismo , Obesidad/metabolismo , Oxidación-Reducción , Palmitoil Coenzima A/metabolismo , Palmitoilcarnitina/metabolismo , Ratas , Ratas Wistar , Reproducibilidad de los Resultados
15.
J Inherit Metab Dis ; 37(5): 783-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24623196

RESUMEN

The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and protein oxidative damage and antioxidant defenses in asymptomatic, nonstressed, MCAD-deficient patients and healthy controls. Patients were subdivided into three groups based on therapy: patients without prescribed supplementation, patients with carnitine supplementation, and patients with carnitine plus riboflavin supplementation. Compared with healthy controls, nonsupplemented MCAD-deficient patients and patients receiving carnitine supplementation displayed decreased plasma sulfhydryl content (indicating protein oxidative damage). Increased erythrocyte superoxide dismutase (SOD) activity in patients receiving carnitine supplementation probably reflects a compensatory mechanism for scavenging reactive species formation. The combination of carnitine plus riboflavin was not associated with oxidative damage. These are the first indications that MCAD-deficient patients experience protein oxidative damage and that combined supplementation of carnitine and riboflavin may prevent these biochemical alterations. Results suggest involvement of free radicals in the pathophysiology of MCAD deficiency. The underlying mechanisms behind the increased SOD activity upon carnitine supplementation need to be determined. Further studies are necessary to determine the clinical relevance of oxidative stress, including the possibility of antioxidant therapy.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Antioxidantes/metabolismo , Errores Innatos del Metabolismo Lipídico/metabolismo , Estrés Oxidativo , Proteínas/metabolismo , Acil-CoA Deshidrogenasa/metabolismo , Adolescente , Adulto , Carnitina/uso terapéutico , Niño , Preescolar , Estudios Transversales , Eritrocitos/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Metabolismo de los Lípidos/genética , Masculino , Riboflavina/uso terapéutico , Vitaminas/uso terapéutico , Adulto Joven
16.
Gut ; 62(9): 1306-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22722618

RESUMEN

OBJECTIVE: Proper interactions between the intestinal mucosa, gut microbiota and nutrient flow are required to establish homoeostasis of the host. Since the proximal part of the small intestine is the first region where these interactions occur, and since most of the nutrient absorption occurs in the jejunum, it is important to understand the dynamics of metabolic responses of the mucosa in this intestinal region. DESIGN: Germ-free mice aged 8-10 weeks were conventionalised with faecal microbiota, and responses of the jejunal mucosa to bacterial colonisation were followed over a 30-day time course. Combined transcriptome, histology, (1)H NMR metabonomics and microbiota phylogenetic profiling analyses were used. RESULTS: The jejunal mucosa showed a two-phase response to the colonising microbiota. The acute-phase response, which had already started 1 day after conventionalisation, involved repression of the cell cycle and parts of the basal metabolism. The secondary-phase response, which was consolidated during conventionalisation (days 4-30), was characterised by a metabolic shift from an oxidative energy supply to anabolic metabolism, as inferred from the tissue transcriptome and metabonome changes. Detailed transcriptome analysis identified tissue transcriptional signatures for the dynamic control of the metabolic reorientation in the jejunum. The molecular components identified in the response signatures have known roles in human metabolic disorders, including insulin sensitivity and type 2 diabetes mellitus. CONCLUSION: This study elucidates the dynamic jejunal response to the microbiota and supports a prominent role for the jejunum in metabolic control, including glucose and energy homoeostasis. The molecular signatures of this process may help to find risk markers in the declining insulin sensitivity seen in human type 2 diabetes mellitus, for instance.


Asunto(s)
Bacterias/metabolismo , Mucosa Intestinal , Yeyuno , Microbiota/fisiología , Animales , Metabolismo Energético , Heces/microbiología , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Yeyuno/metabolismo , Yeyuno/microbiología , Yeyuno/patología , Yeyuno/fisiopatología , Metabolómica , Ratones , Modelos Animales , Filogenia , Factores de Tiempo , Transcriptoma
17.
Biomed Pharmacother ; 173: 116362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432130

RESUMEN

Reprogrammed metabolism is a hallmark of cancer, but notoriously difficult to target due to metabolic plasticity, especially in response to single metabolic interventions. Combining mTOR inhibitor everolimus and mitochondrial complex 1 inhibitor metformin results in metabolic synergy in in vitro models of triple-negative breast cancer. Here, we investigated whether the effect of this drug combination on tumor size is reflected in changes in tumor metabolism using [U-13C]glucose labeling in an MDA-MB-231 triple negative breast cancer xenograft model. The in vitro effects of everolimus and metformin treatment on oxidative phosphorylation and glycolysis reflected changes in 13C-labeling of metabolites in MDA-MB-231 cells. Treatment of MDA-MB-231 xenografts in SCID/Beige mice with everolimus resulted in slower tumor growth and reduced tumor size and tumor viability by 35%. Metformin treatment moderately inhibited tumor growth but did not enhance everolimus-induced effects. High serum levels of everolimus were reached, whereas levels of metformin were relatively low. Everolimus decreased TCA cycle metabolite labeling and inhibited pyruvate carboxylase activity. Metformin only caused a mild reduction in glycolytic metabolite labeling and did not affect pyruvate carboxylase activity or TCA cycle metabolite labeling. In conclusion, treatment with everolimus, but not metformin, decreased tumor size and viability. Furthermore, the efficacy of everolimus was reflected in reduced 13C-labeling of TCA cycle intermediates and reduced pyruvate carboxylase activity. By using in-depth analysis of drug-induced changes in glucose metabolism in combination with measurement of drug levels in tumor and plasma, effects of metabolically targeted drugs can be explained, and novel targets can be identified.


Asunto(s)
Neoplasias de la Mama , Metformina , Animales , Ratones , Humanos , Femenino , Everolimus/farmacología , Glucosa/metabolismo , Piruvato Carboxilasa , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral , Ratones SCID , Metformina/farmacología
18.
iScience ; 27(3): 109208, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38420581

RESUMEN

Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon. We studied the fate of SCFA as substrates for glucose and lipid metabolism by the host after infusion of 13C-SCFA. In the human distal ileum, no fermentation of FOS:GOS, nor SCFA production, or bacterial cross-feeding was observed. The relative composition of intestinal microbiota changed rapidly during the test day, which demonstrates the relevance of postprandial intestinal sampling to track acute responses of the microbial community toward interventions. SCFA were vividly taken up and metabolized by the host as shown by incorporation of 13C in various host metabolites.

19.
J Lipid Res ; 54(9): 2325-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821742

RESUMEN

Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.


Asunto(s)
Dieta , Metabolismo Energético , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Intestinos/microbiología , Microbiota , Animales , Ácidos Grasos/biosíntesis , Humanos
20.
Am J Physiol Gastrointest Liver Physiol ; 305(12): G900-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24136789

RESUMEN

Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-(13)C]acetate, [2-(13)C]propionate, or [2,4-(13)C2]butyrate directly in the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion, pointing to microbial cross-feeding, was high between acetate and butyrate, low between butyrate and propionate, and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8 and 0.7%, respectively) and butyrate (2.7 and 0.9%, respectively) as substrates, but low or absent from propionate (0.6 and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately eightfold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6-h infusion period. Altogether, gut-derived acetate, propionate, and butyrate play important roles as substrates for glucose, cholesterol, and lipid metabolism.


Asunto(s)
Ciego , Ácidos Grasos Volátiles/metabolismo , Glucosa , Metabolismo de los Lípidos , Hígado/metabolismo , Animales , Ciego/metabolismo , Ciego/microbiología , Colesterol/biosíntesis , Ácidos Grasos Volátiles/administración & dosificación , Perfilación de la Expresión Génica/métodos , Glucosa/biosíntesis , Glucosa/metabolismo , Marcaje Isotópico/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Modelos Animales , Palmitatos/metabolismo , Propionatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA