Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614036

RESUMEN

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/inmunología , Regeneración/inmunología , SARS-CoV-2/inmunología , Adulto , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , COVID-19/patología , Células Dendríticas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Receptor de Muerte Celular Programada 1/inmunología
2.
Nat Commun ; 13(1): 5586, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151076

RESUMEN

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Asunto(s)
COVID-19 , Linfoma , Vacunas , Linfocitos T CD8-positivos , COVID-19/terapia , Epítopos de Linfocito T/genética , Humanos , Inmunización Pasiva , Mutación , Nucleoproteínas/genética , Péptidos/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
3.
Dtsch Med Wochenschr ; 146(17): 1108-1118, 2021 09.
Artículo en Alemán | MEDLINE | ID: mdl-34448187

RESUMEN

Therapy with checkpoint inhibitors still revolutionizes the therapeutical landscape in oncology. Since the first approval of a checkpoint inhibitor for the therapy of malignant melanoma 2011, many other approvals in the field of hematology and oncology followed. Besides monotherapy, a rapidly increasing number of trials is investigating checkpoint inhibitors in different combination therapies for advanced disease. Cumulating evidence suggests checkpoint blockade also as promising option for (neo)-adjuvant treatment. Here we review the different treatment strategies of mono- and combination-therapies. Additionally, important biomarkers for the treatment with checkpoint inhibitors are discussed.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/tendencias , Nivel de Atención , Anticuerpos Monoclonales/uso terapéutico , Biomarcadores , Terapia Combinada , Humanos , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Neoplasias Cutáneas , Nivel de Atención/tendencias , Melanoma Cutáneo Maligno
4.
J Hematol Oncol ; 14(1): 155, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579739

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 "don't eat me signal" is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS: SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS: SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS: SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML.


Asunto(s)
Antígenos de Diferenciación/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CD47/inmunología , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Receptores Inmunológicos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Leucemia Mieloide Aguda/inmunología , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/inmunología
5.
Hemasphere ; 5(7): e603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34235400

RESUMEN

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

6.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34083764

RESUMEN

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfocitos T , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Mesotelina , Ratones , Neoplasias Pancreáticas/terapia , Receptores de Quimiocina/genética
7.
Cells ; 9(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429133

RESUMEN

Multi drug resistance protein 1 (MDR1) expression on tumor cells has been widely investigated in context of drug resistance. However, the role of MDR1 on the immune cell infiltrate of solid tumors remains unknown. The aim of this study was to analyze the prognostic significance of a MDR1+ immune cell infiltrate in epithelial ovarian cancer (EOC) and to identify the MDR1+ leucocyte subpopulation. MDR1 expression was analyzed by immunohistochemistry in 156 EOC samples. In addition to MDR1+ cancer cells, we detected a MDR1+ leucocyte infiltrate (high infiltrate >4 leucocytes per field of view). Correlations and survival analyses were calculated. To identify immune cell subpopulations immunofluorescence double staining was performed. The MDR1+ leucocyte infiltrate was associated with human epidermal growth factor receptor 2 (HER2) (cc = 0.258, p = 0.005) and tumor-associated mucin 1 (TA-MUC1) (cc = 0.202, p = 0.022) expression on cancer cells. A high MDR1+ leucocyte infiltrate was associated with impaired survival, especially in patients whose carcinoma showed either serous histology (median OS 28.80 vs. 50.64 months, p = 0.027, n = 91) or TA-MUC1 expression (median OS 30.60 vs. 63.36 months, p = 0.015, n = 110). Similar findings for PFS suggest an influence of MDR1+ immune cells on the development of chemoresistance. A Cox regression analysis confirmed the independency of a high MDR1+ leucocyte infiltrate as prognostic factor. M2 macrophages were identified as main part of the MDR1+ leucocyte infiltrate expressing MDR1 as well as the M2 marker CD163 and the pan-macrophage marker CD68. Infiltration of MDR1+ leucocytes, mostly M2 macrophages, is associated with poor prognosis of EOC patients. Further understanding of the interaction of M2 macrophages, MDR1 and TA-MUC1 appears to be a key aspect to overcome chemoresistance in ovarian cancer.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Macrófagos/metabolismo , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Leucocitos/metabolismo , Persona de Mediana Edad , Mucina-1/metabolismo , Pronóstico , Supervivencia sin Progresión , Receptor ErbB-2/metabolismo
8.
Theranostics ; 10(2): 856-866, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903155

RESUMEN

Background: In the era of precision medicine, cancer treatment is increasingly tailored according to tumor-specific genomic alterations. The analysis of tumor-derived circulating nucleic acids in cerebrospinal fluid (CSF) by next generation sequencing (NGS) may facilitate precision medicine in the field of CNS cancer. We therefore evaluated whether NGS from CSF of neuro-oncologic patients reliably detects tumor-specific genomic alterations and whether this may help to guide the management of patients with CNS cancer in clinical practice. Patient and methods: CSF samples from 27 patients with various primary and secondary CNS malignancies were collected and evaluated by NGS using a targeted, amplicon-based NGS-panel (Oncomine Focus Assay). All cases were discussed within the framework of a molecular tumor board at the Comprehensive Cancer Center Munich. Results: NGS was technically successful in 23/27 patients (85%). Genomic alterations were detectable in 20/27 patients (74%), 11/27 (40%) of which were potentially actionable. After discussion in the MTB, a change of therapeutic management was recommended in 7/27 (26%) of the cases. However, due to rapid clinical progression, only 4/27 (15%) of the patients were treated according to the recommendation. In a subset of patients (6/27, 22%), a high number of mutations of unknown significance suggestive of a high tumor mutational burden (TMB) were detected. Conclusions: NGS from cerebrospinal fluid is feasible in routine clinical practice and yields therapeutically relevant alterations in a large subset of patients. Integration of this approach into a precision cancer medicine program might help to improve therapeutic options for patients with CNS cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Sistema Nervioso Central/patología , Líquido Cefalorraquídeo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biopsia Líquida/métodos , Medicina de Precisión/normas , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA