Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685964

RESUMEN

Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Glutaril-CoA Deshidrogenasa , Glutaril-CoA Deshidrogenasa/química , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/enzimología , Encefalopatías Metabólicas/genética , Pliegue de Proteína , Mutación Missense , Dominios Proteicos , Humanos , Estabilidad de Enzimas , Solubilidad
2.
Hum Mol Genet ; 21(8): 1877-87, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246293

RESUMEN

Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking an integrated drug discovery approach which has not been applied to this target before, we identified alternative PCs for the treatment of PKU. Shape-focused virtual screening of the National Cancer Institute's chemical library identified 84 candidate molecules with potential to bind to the active site of PAH. An in vitro evaluation of these yielded six compounds that restored the enzymatic activity of the unstable PAHV106A variant and increased its stability in cell-based assays against proteolytic degradation. During a 3-day treatment study, two compounds (benzylhydantoin and 6-amino-5-(benzylamino)-uracil) substantially improved the in vivo Phe oxidation and blood Phe concentrations of PKU mice (Pah(enu1)). Notably, benzylhydantoin was twice as effective as tetrahydrobiopterin. In conclusion, we identified two PCs with high in vivo efficacy that may be further developed into a more effective drug treatment of PKU.


Asunto(s)
Hidantoínas/metabolismo , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/tratamiento farmacológico , Uracilo/análogos & derivados , Animales , Sitios de Unión , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Estabilidad de Enzimas , Humanos , Hidantoínas/química , Hidantoínas/farmacología , Hidantoínas/toxicidad , Ratones , Oxidación-Reducción , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/deficiencia , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/metabolismo , Pliegue de Proteína , Bibliotecas de Moléculas Pequeñas , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacología , Uracilo/toxicidad
3.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 518-531, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30366024

RESUMEN

Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal ß-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/biosíntesis , Oxidación-Reducción , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Isoformas de Proteínas , Transporte de Proteínas
4.
PLoS One ; 9(4): e93852, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718418

RESUMEN

The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central ß-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.


Asunto(s)
Acil-CoA Deshidrogenasa/química , Acil-CoA Deshidrogenasa/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Pliegue de Proteína , Temperatura , Animales , Células COS , Chlorocebus aethiops , Dicroismo Circular , Activación Enzimática , Flavina-Adenina Dinucleótido/metabolismo , Fluorescencia , Calor , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Agregado de Proteínas , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA