Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 1): 117404, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838207

RESUMEN

Owing to its profound pollution-inducing properties and resistance to biodegradation, saline organic wastewater (SOW) has unavoidably emerged as a predominant focal point within the wastewater treatment domain. Substantial quantities of SOW are discharged by diverse industries encompassing food processing, pharmaceuticals, leather manufacturing, petrochemicals, and textiles. Within this review, the inhibitory repercussions of elevated salinity upon biological water treatment systems are subject to methodical scrutiny spanning from sludge characteristics, microbial consortia to the physiological functionality of microorganisms have been investigated. This exposition elucidates the application of both anaerobic and aerobic biological technologies for SOW treatment, which noting that conventional bioreactors can effectually treat SOW through microbial adaptation, and elaborating that cultivation of salt-tolerant bacteria and the design of advanced bioreactors represents a promising avenue for SOW treatment. Furthermore, the mechanisms underpinning microbial acclimatization to hypersaline milieus and the methodologies aimed at amplifying the efficacy of biological SOW treatment are delved into, which point out that microorganism exhibit salt tolerance via extracellular polymeric substance accumulation or by facilitating the influx of osmolarity-regulating agents into the bacterial matrix. Finally, the projections for future inquiry are proffered, encompassing the proliferation and deployment of high salt-tolerant strains, as well as the development of techniques enhancing the salt tolerance of microflora engaged in wastewater treatment.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas Residuales , Aguas del Alcantarillado , Biodegradación Ambiental , Salinidad , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos
2.
Water Res ; 263: 122166, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088880

RESUMEN

Anaerobic Membrane Bioreactor (AnMBR) are employed for solid-liquid separation in wastewater treatment, enhancing process efficiency of digestion systems treating digestate. However, membrane fouling remains a primary challenge. This study operated a pilot-scale AnMBR (P-AnMBR) to treat high-concentration organic digestate, investigating system performance and fouling mechanisms. P-AnMBR operation reduced acid-producing bacteria and increased methane-producing bacteria on the membrane, preventing acid accumulation and ensuring stable operation. The P-AnMBR effectively removed COD and VFA, achieving removal rates of 82.3 % and 92.0 %, respectively. Higher retention of organic nitrogen and lower retention of ammonia nitrogen were observed. The membrane fouling consisted of organic substances (20.3 %), predominantly polysaccharides, and inorganic substances (79.7 %), primarily Mg ions (10.1 %) and Ca ions (4.5 %). To reduce the increased transmembrane pressure (TMP) caused by fouling (a 10.6-fold increase in filtration resistance), backwash frequency experiment was conducted. It revealed a 30-min backwash frequency minimized membrane flux decline, facilitating recovery to higher flux levels. The water produced amounted to 70.3 m³ over 52 days. The research provided theoretical guidance and practical support for engineering applications, offering practical insights for scaling up P-AnMBR.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Aguas Residuales/química , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Filtración , Metano/metabolismo
3.
Water Res ; 197: 117095, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33862392

RESUMEN

A 300m3/d demonstration project of soybean-process wastewater has been established recently with a Spiral Symmetric Stream Anaerobic Bioreactor (SSSAB) as the core. In order to obtain the optimal operation strategy for a full-scale SSSAB and to make it run efficiently and stably in a demonstration project, a Pilot-scale SSSAB (P-SSSAB, effective volume 100 L) was performed for the treatment of soybean-process wastewater over 216 days. The volumetric load rate (VLR) range of the P-SSSAB was 0.32~27.17 kg COD/(m3·d), where the highest VLR [27.17 kg COD/(m3·d)] was 2.01 times to the highest value [13.5 kg COD/(m3·d)] reported. The pH and VFA/ALK of the effluent from the P-SSSAB were in the range of 6.9 up to 9.2 and 0.03 up to 0.17, respectively. The methane yield of the P-SSSAB increased from 0.03 m3/kg COD to 0.47 m3/kg COD, which was 3.36 times to the maximum value (0.14 m3/kg COD) reported. To meet the influent requirement of the aerobic biological treatment in demonstration project (influent COD ≤ 1.5 g/L), the maximum VLR of SSSAB was optimal at about 22 kg COD/(m3·d). By analyzing the sludge bed characteristics of the P-SSSAB, it was obvious that zone I (the bottom of the bed) was the major contributor of the COD removal, while zone III (the upper part of the bed) was the major contributor for the NH4+-N increase. The anaerobic granular sludge (AGS) in the bed showed a good granulation. The average MLVSS/MLSS value in sludge bed was about 0.7, and PN/PS in TB-EPS (zone I, II and III) increased to 6.830, 4.257, and 3.747, respectively. SMA and coenzyme F420 values of zone III were the maximum [666.35 ml CH4/(g VSS·d) and 0.690 mol/g VSS, respectively]. According to the analysis obtained from the 16S rRNA high-throughput sequencing, the microbial community in the AGS had been more specific to the soybean-process wastewater since the bacteria Firmicutes were increased. The relative abundance of microbe which perform direct interspecies electron transfer (DIET) for the syntrophic degradation of VFAs and production of the methane has been increased significantly, such as the bacteria Syntrophomonas and archaea Methanosaeta.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Metano , ARN Ribosómico 16S , Ríos , Glycine max , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA