Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 50(17): e99, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35713550

RESUMEN

Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas in mammals the substrate for Q-modification in tRNA is queuine, the catabolic product of the Q-base of gut bacteria. This gut microbiome dependent tRNA modification may play pivotal roles in translational regulation in different cellular contexts, but extensive studies of Q-modification biology are hindered by the lack of high throughput sequencing methods for its detection and quantitation. Here, we describe a periodate-treatment method that enables single base resolution profiling of Q-modification in tRNAs by Nextgen sequencing from biological RNA samples. Periodate oxidizes the Q-base, which results in specific deletion signatures in the RNA-seq data. Unexpectedly, we found that periodate-treatment also enables the detection of several 2-thio-modifications including τm5s2U, mcm5s2U, cmnm5s2U, and s2C by sequencing in human and E. coli tRNA. We term this method periodate-dependent analysis of queuosine and sulfur modification sequencing (PAQS-seq). We assess Q- and 2-thio-modifications at the tRNA isodecoder level, and 2-thio modification changes in stress response. PAQS-seq should be widely applicable in the biological studies of Q- and 2-thio-modifications in mammalian and microbial tRNAs.


Asunto(s)
Anticodón , Nucleósido Q , Aminoácidos/genética , Animales , Anticodón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos/genética , Nucleósido Q/química , Ácido Peryódico , ARN de Transferencia/metabolismo , Azufre
2.
Biochemistry ; 58(45): 4457-4465, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31657208

RESUMEN

Immunofluorescence (IF) is widely used to study the cellular localization and organization of proteins. However, steps such as fixation and permeabilization may affect cell morphology and/or introduce artifacts. For bacterial cells, commonly used permeabilization methods for IF include treatment with lysozyme. Here, we demonstrate two potential pitfalls in IF due to specific permeabilization methods: flattening or disruption of the cells caused by lysozyme treatment and inaccessibility of the antibody to the fixed nucleoid region. To solve these issues, we propose an improved IF method for bacterial cells, which includes the combined treatment with 70% ethanol, lysozyme, and DNase I. Treatment with 70% ethanol before the lysozyme permeabilization can better preserve the three-dimensional shape of the cell, and treatment with DNase I after the lysozyme permeabilization can eliminate the inaccessibility of the antibody to the nucleoid region. We further demonstrate that the DNase I treatment does not affect the preservation of the DNA-associated structure or organization of proteins. Finally, the method is also compatible with applications in which IF needs to be combined with RNA fluorescence in situ hybridization.


Asunto(s)
Bacterias/citología , Técnica del Anticuerpo Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , Anticuerpos/química , Bacterias/ultraestructura , Permeabilidad de la Membrana Celular , Desoxirribonucleasa I/química , Escherichia coli/citología , Escherichia coli/ultraestructura , Fijadores/química , Microscopía Fluorescente , Muramidasa/química , Imagen Óptica/métodos , Fijación del Tejido/métodos
3.
J Cell Sci ; 130(24): 4180-4192, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29133588

RESUMEN

Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.


Asunto(s)
Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Antígenos de Histocompatibilidad Menor/genética , Orgánulos/genética , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/genética , Núcleo Celular/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Orgánulos/ultraestructura , Proteínas/genética , ARN/genética , ARN Nucleolar Pequeño/genética
4.
Biochemistry ; 57(2): 209-215, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29083867

RESUMEN

Single-cell fluorescence imaging is a powerful technique for studying inherently heterogeneous biological processes. To correlate a genotype or phenotype to a specific cell, images containing a population of cells must first be properly segmented. However, a proper segmentation with minimal user input becomes challenging when cells are clustered or overlapping in three dimensions. We introduce a new analysis package, Seg-3D, for the segmentation of bacterial cells in three-dimensional (3D) images, based on local thresholding, shape analysis, concavity-based cluster splitting, and morphology-based 3D reconstruction. The reconstructed cell volumes allow us to directly quantify the fluorescent signals from biomolecules of interest within individual cells. We demonstrate the application of this analysis package in 3D segmentation of individual bacterial pathogens invading host cells. We believe Seg-3D can be an efficient and simple program that can be used to analyze a wide variety of single-cell images, especially for biological systems involving random 3D orientation and clustering behavior, such as bacterial infection or colonization.


Asunto(s)
Bacterias/ultraestructura , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Análisis de la Célula Individual/métodos , Animales , Automatización , Simulación por Computador , Proteínas Fluorescentes Verdes/análisis , Interacciones Huésped-Patógeno , Análisis de los Mínimos Cuadrados , Macrófagos/microbiología , Ratones , Salmonella/química , Salmonella/ultraestructura , Interfaz Usuario-Computador
5.
Langmuir ; 33(43): 12510-12515, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28984459

RESUMEN

The diffusion of biomolecules at lipid membranes is governed by the viscosity of the underlying two-dimensionally fluid lipid bilayer. For common three-dimensional fluids, viscosity can be modulated by hydrostatic pressure, and pressure-viscosity data have been measured for decades. Remarkably, the two-dimensional analogue of this relationship, the dependence of molecular mobility on tension, has to the best of our knowledge never been measured for lipid bilayers, limiting our understanding of cellular mechanotransduction as well as the fundamental fluid mechanics of membranes. Here we report both molecular-scale and mesoscopic measures of fluidity in giant lipid vesicles as a function of mechanical tension applied using micropipette aspiration. Both molecular-scale data, from fluorescence recovery after photobleaching, and micron-scale data, from tracking the diffusion of phase-separated domains, show a surprisingly weak dependence of viscosity on tension, in contrast to predictions of recent molecular dynamics simulations, highlighting fundamental gaps in our understanding of membrane fluidity.

6.
Biophys J ; 109(4): 732-6, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26287625

RESUMEN

Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer.


Asunto(s)
Membrana Dobles de Lípidos , Microfluídica/métodos , Difusión , Hidrodinámica , Membrana Dobles de Lípidos/química , Microscopía Fluorescente , Modelos Biológicos , Movimiento (Física) , Liposomas Unilamelares/química , Viscosidad
7.
Cell Rep ; 36(13): 109764, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592145

RESUMEN

Small RNAs (sRNAs) are important gene regulators in bacteria. Many sRNAs act post-transcriptionally by affecting translation and degradation of the target mRNAs upon base-pairing interactions. Here we present a general approach combining imaging and mathematical modeling to determine kinetic parameters at different levels of sRNA-mediated gene regulation that contribute to overall regulation efficacy. Our data reveal that certain sRNAs previously characterized as post-transcriptional regulators can regulate some targets co-transcriptionally, leading to a revised model that sRNA-mediated regulation can occur early in an mRNA's lifetime, as soon as the sRNA binding site is transcribed. This co-transcriptional regulation is likely mediated by Rho-dependent termination when transcription-coupled translation is reduced upon sRNA binding. Our data also reveal several important kinetic steps that contribute to the differential regulation of mRNA targets by an sRNA. Particularly, binding of sRNA to the target mRNA may dictate the regulation hierarchy observed within an sRNA regulon.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , ARN Bacteriano/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Escherichia coli/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Regulón/genética
8.
Elife ; 102021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33616037

RESUMEN

RNA-binding proteins play myriad roles in regulating RNAs and RNA-mediated functions. In bacteria, the RNA chaperone Hfq is an important post-transcriptional gene regulator. Using live-cell super-resolution imaging, we can distinguish Hfq binding to different sizes of cellular RNAs. We demonstrate that under normal growth conditions, Hfq exhibits widespread mRNA-binding activity, with the distal face of Hfq contributing mostly to the mRNA binding in vivo. In addition, sRNAs can either co-occupy Hfq with the mRNA as a ternary complex, or displace the mRNA from Hfq in a binding face-dependent manner, suggesting mechanisms through which sRNAs rapidly access Hfq to induce sRNA-mediated gene regulation. Finally, our data suggest that binding of Hfq to certain mRNAs through its distal face can recruit RNase E to promote turnover of these mRNAs in a sRNA-independent manner, and such regulatory function of Hfq can be decoyed by sRNA competitors that bind strongly at the distal face.


Messenger RNAs or mRNAs are molecules that the cell uses to transfer the information stored in the cell's DNA so it can be used to make proteins. Bacteria can regulate their levels of mRNA molecules, and they can therefore control how many proteins are being made, by producing a different type of RNA called small regulatory RNAs or sRNAs. Each sRNA can bind to several specific mRNA targets, and lead to their degradation by an enzyme called RNase E. Certain bacterial RNA-binding proteins, such as Hfq, protect sRNAs from being degraded, and help them find their mRNA targets. Hfq is abundant in bacteria. It is critical for bacterial growth under harsh conditions and it is involved in the process through which pathogenic bacteria infect cells. However, it is outnumbered by the many different RNA molecules in the cell, which compete for binding to the protein. It is not clear how Hfq prioritizes the different RNAs, or how binding to Hfq alters RNA regulation. Park, Prévost et al. imaged live bacterial cells to see how Hfq binds to RNA strands of different sizes. The experiments revealed that, when bacteria are growing normally, Hfq is mainly bound to mRNA molecules, and it can recruit RNase E to speed up mRNA degradation without the need for sRNAs. Park, Prévost et al. also showed that sRNAs could bind to Hfq by either replacing the bound mRNA or co-binding alongside it. The sRNA molecules that strongly bind Hfq can compete against mRNA for binding, and thus slow down the degradation of certain mRNAs. Hfq could be a potential drug target for treating bacterial infections. Understanding how it interacts with other molecules in bacteria could provide help in the development of new therapeutics. These findings suggest that a designed RNA that binds strongly to Hfq could disrupt its regulatory roles in bacteria, killing them. This could be a feasible drug design opportunity to counter the emergence of antibiotic-resistant bacteria.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Chaperonas Moleculares/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética
9.
J Vis Exp ; (140)2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30417870

RESUMEN

Fluorescence microscopy is a powerful tool to detect biological molecules in situ and monitor their dynamics and interactions in real-time. In addition to conventional epi-fluorescence microscopy, various imaging techniques have been developed to achieve specific experimental goals. Some of the widely used techniques include single-molecule fluorescence resonance energy transfer (smFRET), which can report conformational changes and molecular interactions with angstrom resolution, and single-molecule detection-based super-resolution (SR) imaging, which can enhance the spatial resolution approximately ten to twentyfold compared to diffraction-limited microscopy. Here we present a customer-designed integrated system, which merges multiple imaging methods in one microscope, including conventional epi-fluorescent imaging, single-molecule detection-based SR imaging, and multi-color single-molecule detection, including smFRET imaging. Different imaging methods can be achieved easily and reproducibly by switching optical elements. This set-up is easy to adopt by any research laboratory in biological sciences with a need for routine and diverse imaging experiments at a reduced cost and space relative to building separate microscopes for individual purposes.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Multimodal/métodos , Color , Transferencia Resonante de Energía de Fluorescencia , Imagen Individual de Molécula
10.
Rev Sci Instrum ; 87(11): 113704, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910631

RESUMEN

A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA