Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 35(8): 1406-1423.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463576

RESUMEN

Lactate was implicated in the activation of hepatic stellate cells (HSCs). However, the mechanism by which lactate exerts its effect remains elusive. Using RNA-seq and CUT&Tag chromatin profiling, we found that induction of hexokinase 2 (HK2) expression in activated HSCs is required for induced gene expression by histone lactylation but not histone acetylation. Inhibiting histone lactylation by Hk2 deletion or pharmacological inhibition of lactate production diminishes HSC activation, whereas exogenous lactate but not acetate supplementation rescues the activation phenotype. Thus, lactate produced by activated HSCs determines the HSC fate via histone lactylation. We found that histone acetylation competes with histone lactylation, which could explain why class I HDAC (histone deacetylase) inhibitors impede HSC activation. Finally, HSC-specific or systemic deletion of HK2 inhibits HSC activation and liver fibrosis in vivo. Therefore, we provide evidence that HK2 may be an effective therapeutic target for liver fibrosis.


Asunto(s)
Hexoquinasa , Histonas , Humanos , Histonas/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Expresión Génica , Lactatos/farmacología
2.
Nutrients ; 15(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686772

RESUMEN

Chronic liver injury due to various hepatotoxic stimuli commonly leads to fibrosis, which is a crucial factor contributing to liver disease-related mortality. Despite the potential benefits of Suaeda glauca (S. glauca) as a natural product, its biological and therapeutic effects are barely known. This study investigated the effects of S. glauca extract (SGE), obtained from a smart farming system utilizing LED lamps, on the activation of hepatic stellate cells (HSCs) and the development of liver fibrosis. C57BL/6 mice received oral administration of either vehicle or SGE (30 or 100 mg/kg) during CCl4 treatment for 6 weeks. The supplementation of SGE significantly reduced liver fibrosis induced by CCl4 in mice as evidenced by histological changes and a decrease in collagen accumulation. SGE treatment also led to a reduction in markers of HSC activation and inflammation as well as an improvement in blood biochemical parameters. Furthermore, SGE administration diminished fibrotic responses following acute liver injury. Mechanistically, SGE treatment prevented HSC activation and inhibited the phosphorylation and nuclear translocation of Smad2/3, which are induced by transforming growth factor (TGF)-ß1 in HSCs. Our findings indicate that SGE exhibits anti-fibrotic effects by inhibiting TGFß1-Smad2/3 signaling in HSCs.


Asunto(s)
Chenopodiaceae , Células Estrelladas Hepáticas , Animales , Ratones , Ratones Endogámicos C57BL , Cirrosis Hepática/tratamiento farmacológico
3.
Cell Metab ; 35(11): 2060-2076.e9, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37852255

RESUMEN

A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Grasos Monoinsaturados , Animales , Ratones , Ácidos Grasos Monoinsaturados/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos/metabolismo , Transporte Biológico , Homeostasis
4.
Nat Commun ; 13(1): 899, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173161

RESUMEN

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Asunto(s)
Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hexoquinasa/metabolismo , Neoplasias/patología , Proteínas de Anclaje a la Quinasa A/metabolismo , Células A549 , Animales , Células CHO , Carcinogénesis/patología , Línea Celular Tumoral , Cricetulus , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Desoxiglucosa/farmacología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glicosilación , Células HCT116 , Células HEK293 , Hexoquinasa/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Metástasis de la Neoplasia/patología , Fosforilación/efectos de los fármacos , Ratas , Factores de Transcripción de la Familia Snail/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA