Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(4): 1010-1021.e32, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30981557

RESUMEN

Genome sequences are known for two archaic hominins-Neanderthals and Denisovans-which interbred with anatomically modern humans as they dispersed out of Africa. We identified high-confidence archaic haplotypes in 161 new genomes spanning 14 island groups in Island Southeast Asia and New Guinea and found large stretches of DNA that are inconsistent with a single introgressing Denisovan origin. Instead, modern Papuans carry hundreds of gene variants from two deeply divergent Denisovan lineages that separated over 350 thousand years ago. Spatial and temporal structure among these lineages suggest that introgression from one of these Denisovan groups predominantly took place east of the Wallace line and continued until near the end of the Pleistocene. A third Denisovan lineage occurs in modern East Asians. This regional mosaic suggests considerable complexity in archaic contact, with modern humans interbreeding with multiple Denisovan groups that were geographically isolated from each other over deep evolutionary time.


Asunto(s)
Introgresión Genética/genética , Haplotipos/genética , Hominidae/genética , Animales , Pueblo Asiatico/genética , Evolución Biológica , Flujo Génico , Variación Genética/genética , Genoma Humano/genética , Humanos , Indonesia , Hombre de Neandertal/genética , Oceanía
2.
Proc Natl Acad Sci U S A ; 121(26): e2405889121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889149

RESUMEN

Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.


Asunto(s)
Haplotipos , Hombre de Neandertal , Papúa Nueva Guinea , Humanos , Animales , Hombre de Neandertal/genética , Adaptación Fisiológica/genética , Genética de Población
3.
PLoS Genet ; 18(12): e1010470, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480515

RESUMEN

Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.


Asunto(s)
Evolución Molecular , Hominidae , Sistema Inmunológico , Hombre de Neandertal , Humanos , Hominidae/genética , Hombre de Neandertal/genética , Papúa Nueva Guinea
4.
Nucleic Acids Res ; 50(12): 6735-6752, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35713545

RESUMEN

We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.


Asunto(s)
Metilación de ADN , Embrión de Mamíferos , Humanos , Metilación de ADN/genética , Reproducibilidad de los Resultados , Embrión de Mamíferos/metabolismo , Islas de CpG , Etnicidad
5.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35294555

RESUMEN

Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.


Asunto(s)
Pueblo Asiatico , ADN Mitocondrial , Asia Sudoriental , ADN Mitocondrial/genética , Humanos , Masculino , Mitocondrias/genética , Filogenia
6.
Mol Ecol ; 32(10): 2551-2564, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36151926

RESUMEN

The oral microbiota is a highly complex and diversified part of the human microbiome. Being located at the interface between the human body and the exterior environment, this microbiota can deepen our understanding of the environmental impacts on the global status of human health. This research topic has been well addressed in Westernized populations, but these populations only represent a fraction of human diversity. Papua New Guinea hosts very diverse environments and one of the most unique human biological diversities worldwide. In this study we performed the first known characterization of the oral microbiome in 85 Papua New Guinean individuals living in different environments, using a qualitative and quantitative approach. We found a significant geographical structure of the Papua New Guineans oral microbiome, especially in the groups most isolated from urban spaces. In comparison to other global populations, two bacterial genera related to iron absorption were significantly more abundant in Papua New Guineans and Aboriginal Australians, which suggests a shared oral microbiome signature. Further studies will be needed to confirm and explore this possible regional-specific oral microbiome profile.


Asunto(s)
Microbiota , Boca , Humanos , Australia , Geografía , Microbiota/genética , Papúa Nueva Guinea , Boca/microbiología
7.
Mol Biol Evol ; 38(11): 5107-5121, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34383935

RESUMEN

The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole-genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our data set, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders, and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia, and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.


Asunto(s)
Etnicidad , Migración Humana , Australia , Humanos , Papúa Nueva Guinea , Filogenia
8.
Am J Hum Genet ; 102(1): 58-68, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304377

RESUMEN

At the dawn of the second millennium, the expansion of the Indian Ocean trading network aligned with the emergence of an outward-oriented community along the East African coast to create a cosmopolitan cultural and trading zone known as the Swahili Corridor. On the basis of analyses of new genome-wide genotyping data and uniparental data in 276 individuals from coastal Kenya and the Comoros islands, along with large-scale genetic datasets from the Indian Ocean rim, we reconstruct historical population dynamics to show that the Swahili Corridor is largely an eastern Bantu genetic continuum. Limited gene flows from the Middle East can be seen in Swahili and Comorian populations at dates corresponding to historically documented contacts. However, the main admixture event in southern insular populations, particularly Comorian and Malagasy groups, occurred with individuals from Island Southeast Asia as early as the 8th century, reflecting an earlier dispersal from this region. Remarkably, our results support recent archaeological and linguistic evidence-based suggestions that the Comoros archipelago was the earliest location of contact between Austronesian and African populations in the Swahili Corridor.


Asunto(s)
Flujo Génico , Genética de Población , Asia , Australia , Comoras , Variación Genética , Humanos , Kenia , Polimorfismo de Nucleótido Simple/genética
9.
Mol Biol Evol ; 36(3): 575-586, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649405

RESUMEN

The Arabian Peninsula (AP) was an important crossroad between Africa, Asia, and Europe, being the cradle of the structure defining these main human population groups, and a continuing path for their admixture. The screening of 741,000 variants in 420 Arabians and 80 Iranians allowed us to quantify the dominant sub-Saharan African admixture in the west of the peninsula, whereas South Asian and Levantine/European influence was stronger in the east, leading to a rift between western and eastern sides of the Peninsula. Dating of the admixture events indicated that Indian Ocean slave trade and Islamization periods were important moments in the genetic makeup of the region. The western-eastern axis was also observable in terms of positive selection of diversity conferring lactose tolerance, with the West AP developing local adaptation and the East AP acquiring the derived allele selected in European populations and existing in South Asia. African selected malaria resistance through the DARC gene was enriched in all Arabian genomes, especially in the western part. Clear European influences associated with skin and eye color were equally frequent across the Peninsula.


Asunto(s)
Árabes/genética , Flujo Génico , Genoma Humano , Humanos , Medio Oriente , Filogeografía
10.
J Hum Genet ; 65(10): 875-887, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483274

RESUMEN

New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50-65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania.


Asunto(s)
Etnicidad/genética , Migración Humana/historia , Adulto , Asia Sudoriental , Australia , Etnicidad/historia , Femenino , Genoma Mitocondrial , Fenómenos Geológicos , Haplotipos/genética , Historia Antigua , Humanos , Funciones de Verosimilitud , Masculino , Nueva Guinea , Papúa Nueva Guinea , Filogenia , Filogeografía , Tasmania
11.
Am J Phys Anthropol ; 173(3): 423-436, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812238

RESUMEN

OBJECTIVES: Archeological evidence shows that first nomadic pastoralists came to the African Sahel from northeastern Sahara, where milking is reported by ~7.5 ka. A second wave of pastoralists arrived with the expansion of Arabic tribes in 7th-14th century CE. All Sahelian pastoralists depend on milk production but genetic diversity underlying their lactase persistence (LP) is poorly understood. MATERIALS AND METHODS: We investigated SNP variants associated with LP in 1,241 individuals from 29 mostly pastoralist populations in the Sahel. Then, we analyzed six SNPs in the neighboring fragment (419 kb) in the Fulani and Tuareg with the -13910*T mutation, reconstructed haplotypes, and calculated expansion age and growth rate of this variant. RESULTS: Our results reveal a geographic localization of two different LP variants in the Sahel: -13910*T west of Lake Chad (Fulani and Tuareg pastoralists) and -13915*G east of there (mostly Arabic-speaking pastoralists). We show that -13910*T has a more diversified haplotype background among the Fulani than among the Tuareg and that the age estimate for expansion of this variant among the Fulani (~8.5 ka) corresponds to introduction of cattle to the area. CONCLUSIONS: This is the first study showing that the "Eurasian" LP allele -13910*T is widespread both in northern Europe and in the Sahel; however, it is limited to pastoralists in the Sahel. Since the Fulani haplotype with -13910*T is shared with contemporary Eurasians, its origin could be in a region encompassing the Near East and northeastern Africa in a population ancestral to both Saharan pastoralists and European farmers.


Asunto(s)
Población Negra , Etnicidad , Lactasa/genética , Polimorfismo de Nucleótido Simple/genética , África del Norte , Animales , Antropología Física , Árabes/genética , Árabes/estadística & datos numéricos , Población Negra/genética , Población Negra/estadística & datos numéricos , Dieta , Etnicidad/genética , Etnicidad/estadística & datos numéricos , Haplotipos , Humanos , Leche , Migrantes , Población Blanca/genética , Población Blanca/estadística & datos numéricos
12.
Proc Natl Acad Sci U S A ; 114(32): E6498-E6506, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28716916

RESUMEN

Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Etnicidad/genética , Variación Genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Anciano , Femenino , Humanos , Madagascar/etnología , Masculino , Persona de Mediana Edad
13.
Genome Res ; 25(4): 459-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25770088

RESUMEN

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Asunto(s)
Cromosomas Humanos Y/genética , Evolución Molecular , Grupos Raciales/genética , Secuencia de Bases , ADN Mitocondrial/genética , Variación Genética/genética , Genética de Población , Haplotipos/genética , Humanos , Masculino , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
14.
Mol Biol Evol ; 33(9): 2396-400, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381999

RESUMEN

Malagasy genetic diversity results from an exceptional protoglobalization process that took place over a thousand years ago across the Indian Ocean. Previous efforts to locate the Asian origin of Malagasy highlighted Borneo broadly as a potential source, but so far no firm source populations were identified. Here, we have generated genome-wide data from two Southeast Borneo populations, the Banjar and the Ngaju, together with published data from populations across the Indian Ocean region. We find strong support for an origin of the Asian ancestry of Malagasy among the Banjar. This group emerged from the long-standing presence of a Malay Empire trading post in Southeast Borneo, which favored admixture between the Malay and an autochthonous Borneo group, the Ma'anyan. Reconciling genetic, historical, and linguistic data, we show that the Banjar, in Malay-led voyages, were the most probable Asian source among the analyzed groups in the founding of the Malagasy gene pool.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Etnicidad/genética , Variación Genética , Evolución Biológica , Borneo , ADN Mitocondrial/genética , Evolución Molecular , Pool de Genes , Genética de Población/métodos , Genoma Humano , Haplotipos , Humanos , Madagascar , Malasia , Filogenia
15.
Proc Natl Acad Sci U S A ; 111(3): 936-41, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395773

RESUMEN

Linguistic and cultural evidence suggest that Madagascar was the final point of two major dispersals of Austronesian- and Bantu-speaking populations. Today, the Mikea are described as the last-known Malagasy population reported to be still practicing a hunter-gatherer lifestyle. It is unclear, however, whether the Mikea descend from a remnant population that existed before the arrival of Austronesian and Bantu agriculturalists or whether it is only their lifestyle that separates them from the other contemporary populations of South Madagascar. To address these questions we have performed a genome-wide analysis of >700,000 SNP markers on 21 Mikea, 24 Vezo, and 24 Temoro individuals, together with 50 individuals from Bajo and Lebbo populations from Indonesia. Our analyses of these data in the context of data available from other Southeast Asian and African populations reveal that all three Malagasy populations are derived from the same admixture event involving Austronesian and Bantu sources. In contrast to the fact that most of the vocabulary of the Malagasy speakers is derived from the Barito group of the Austronesian language family, we observe that only one-third of their genetic ancestry is related to the populations of the Java-Kalimantan-Sulawesi area. Because no additional ancestry components distinctive for the Mikea were found, it is likely that they have adopted their hunter-gatherer way of life through cultural reversion, and selection signals suggest a genetic adaptation to their new lifestyle.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Grupos de Población/genética , Algoritmos , Pueblo Asiatico/genética , Población Negra/genética , Cultura , Etnicidad/genética , Geografía , Haplotipos , Homocigoto , Humanos , Lingüística , Madagascar , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
BMC Genomics ; 16: 191, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25880430

RESUMEN

BACKGROUND: Linguistic, cultural and genetic characteristics of the Malagasy suggest that both Africans and Island Southeast Asians were involved in the colonization of Madagascar. Populations from the Indonesian archipelago played an especially important role because linguistic evidence suggests that the Malagasy language branches from the Southeast Barito language family of southern Borneo, Indonesia, with the closest language spoken today by the Ma'anyan. To test for a genetic link between Malagasy and these linguistically related Indonesian populations, we studied the Ma'anyan and other Indonesian ethnic groups (including the sea nomad Bajo) that, from their historical and linguistic contexts, may be modern descendants of the populations that helped enact the settlement of Madagascar. RESULT: A combination of phylogeographic analysis of genetic distances, haplotype comparisons and inference of parental populations by linear optimization, using both maternal and paternal DNA lineages, suggests that Malagasy derive from multiple regional sources in Indonesia, with a focus on eastern Borneo, southern Sulawesi and the Lesser Sunda islands. CONCLUSION: Settlement may have been mediated by ancient sea nomad movements because the linguistically closest population, Ma'anyan, has only subtle genetic connections to Malagasy, whereas genetic links with other sea nomads are more strongly supported. Our data hint at a more complex scenario for the Indonesian settlement of Madagascar than has previously been recognized.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Genética de Población , ADN Mitocondrial/clasificación , Ligamiento Genético , Genotipo , Haplotipos , Humanos , Indonesia , Madagascar , Filogenia
17.
Mol Biol Evol ; 30(4): 824-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23180578

RESUMEN

Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ~8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.


Asunto(s)
ADN Mitocondrial/genética , Diente Molar/anatomía & histología , Sus scrofa/genética , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Europa (Continente) , Humanos , Filogeografía , Análisis de Secuencia de ADN , Porcinos/genética
18.
Proc Natl Acad Sci U S A ; 108(24): 9788-91, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628562

RESUMEN

The Neolithic is a key period in the history of the European settlement. Although archaeological and present-day genetic data suggest several hypotheses regarding the human migration patterns at this period, validation of these hypotheses with the use of ancient genetic data has been limited. In this context, we studied DNA extracted from 53 individuals buried in a necropolis used by a French local community 5,000 y ago. The relatively good DNA preservation of the samples allowed us to obtain autosomal, Y-chromosomal, and/or mtDNA data for 29 of the 53 samples studied. From these datasets, we established close parental relationships within the necropolis and determined maternal and paternal lineages as well as the absence of an allele associated with lactase persistence, probably carried by Neolithic cultures of central Europe. Our study provides an integrative view of the genetic past in southern France at the end of the Neolithic period. Furthermore, the Y-haplotype lineages characterized and the study of their current repartition in European populations confirm a greater influence of the Mediterranean than the Central European route in the peopling of southern Europe during the Neolithic transition.


Asunto(s)
ADN/análisis , Emigración e Inmigración , Fósiles , Población Blanca/genética , ADN/genética , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Europa (Continente) , Francia , Genética de Población , Geografía , Humanos , Región Mediterránea , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , Factores de Tiempo
19.
Proc Natl Acad Sci U S A ; 108(45): 18255-9, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22042855

RESUMEN

The impact of the Neolithic dispersal on the western European populations is subject to continuing debate. To trace and date genetic lineages potentially brought during this transition and so understand the origin of the gene pool of current populations, we studied DNA extracted from human remains excavated in a Spanish funeral cave dating from the beginning of the fifth millennium B.C. Thanks to a "multimarkers" approach based on the analysis of mitochondrial and nuclear DNA (autosomes and Y-chromosome), we obtained information on the early Neolithic funeral practices and on the biogeographical origin of the inhumed individuals. No close kinship was detected. Maternal haplogroups found are consistent with pre-Neolithic settlement, whereas the Y-chromosomal analyses permitted confirmation of the existence in Spain approximately 7,000 y ago of two haplogroups previously associated with the Neolithic transition: G2a and E1b1b1a1b. These results are highly consistent with those previously found in Neolithic individuals from French Late Neolithic individuals, indicating a surprising temporal genetic homogeneity in these groups. The high frequency of G2a in Neolithic samples in western Europe could suggest, furthermore, that the role of men during Neolithic dispersal could be greater than currently estimated.


Asunto(s)
ADN/genética , Fósiles , Rol , Núcleo Celular/genética , Cromosomas Humanos Y , Historia Antigua , Humanos , Masculino , Mitocondrias/genética
20.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688933

RESUMEN

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Asunto(s)
Altitud , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Selección Genética , Papúa Nueva Guinea , Humanos , Genoma Humano , Genética de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA