Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232779

RESUMEN

Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.


Asunto(s)
Arabidopsis , Sequías , Productos Agrícolas/genética , Fitomejoramiento , Estrés Fisiológico/genética , Agua
2.
Plants (Basel) ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956505

RESUMEN

The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA