Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655851

RESUMEN

Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias , Humanos , Membranas Mitocondriales , Fosfolípidos , Transporte Biológico , Enfermedades Raras
2.
J Biol Chem ; 298(9): 102364, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35963429

RESUMEN

The heterogeneous nuclear ribonucleoprotein hnRNP A1 is a nucleocytoplasmic-shuttling RNA-binding protein that plays an important role in nucleic acid metabolism and gene expression regulation. The function of hnRNP A1 is determined in part by its specific location within the cell. Although some work has been done to elucidate the signaling pathways that regulate the cellular localization of hnRNP A1, the precise mechanism(s), including physiological and pathophysiological conditions that alter hnRNP A1 localization, are not known. We previously conducted an unbiased RNAi-based kinome-wide screen to identify kinases that regulate hnRNP A1 localization during hypertonic stress. One of the hits from this screen is AMPK-related protein kinase 5 (ARK5). Here, we validate ARK5 as the kinase responsible for controlling hnRNP A1 subcellular localization in response to hypertonic stress. We find using immunoprecipitation and in vitro kinase assay methods that ARK5 directly interacts with and phosphorylates hnRNP A1 on serine residues within the F-peptide region. We further show that the M9 motif of hnRNP A1 is essential for the ARK5-hnRNP A1 interaction and subsequent phosphorylation. In addition, the silencing of ARK5 increases the expression of antiapoptotic protein Bcl-xL and consequently delays caspase activation during hypertonic stress. Our results indicate that ARK5 phosphorylates hnRNP A1 and regulates its subcellular localization during hypertonic stress.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Ácidos Nucleicos , Proteínas Quinasas Activadas por AMP/metabolismo , Caspasas/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas , Presión Osmótica , Serina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA