Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226041

RESUMEN

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Asunto(s)
Antígenos Virales/inmunología , Virus Hendra/inmunología , Infecciones por Henipavirus/inmunología , Inmunidad Celular , Inmunidad Innata , Pulmón/inmunología , Modelos Inmunológicos , Animales , Antígenos Virales/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quirópteros , Hurones , Virus Hendra/genética , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/patología , Interferones/genética , Interferones/inmunología , Pulmón/patología , Pulmón/virología , Especificidad de la Especie
2.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783670

RESUMEN

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Asunto(s)
Infecciones por Henipavirus/genética , MicroARNs/genética , Internalización del Virus , Animales , Hurones , Técnica del Anticuerpo Fluorescente , Estudio de Asociación del Genoma Completo , Henipavirus , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Metabolites ; 12(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422291

RESUMEN

The global threat of COVID-19 has led to an increased use of metabolomics to study SARS-CoV-2 infections in animals and humans. In spite of these efforts, however, understanding the metabolome of SARS-CoV-2 during an infection remains difficult and incomplete. In this study, metabolic responses to a SAS-CoV-2 challenge experiment were studied in nasal washes collected from an asymptomatic ferret model (n = 20) at different time points before and after infection using an LC-MS-based metabolomics approach. A multivariate analysis of the nasal wash metabolome data revealed several statistically significant features. Despite no effects of sex or interaction between sex and time on the time course of SARS-CoV-2 infection, 16 metabolites were significantly different at all time points post-infection. Among these altered metabolites, the relative abundance of taurine was elevated post-infection, which could be an indication of hepatotoxicity, while the accumulation of sialic acids could indicate SARS-CoV-2 invasion. Enrichment analysis identified several pathways influenced by SARS-CoV-2 infection. Of these, sugar, glycan, and amino acid metabolisms were the key altered pathways in the upper respiratory channel during infection. These findings provide some new insights into the progression of SARS-CoV-2 infection in ferrets at the metabolic level, which could be useful for the development of early clinical diagnosis tools and new or repurposed drug therapies.

5.
Sci Rep ; 12(1): 5680, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383204

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.


Asunto(s)
COVID-19 , Hurones , Animales , Mucosa Nasal , SARS-CoV-2 , Carga Viral
6.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33400387

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Asunto(s)
COVID-19 , Hurones , Animales , Australia , COVID-19/veterinaria , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
7.
ILAR J ; 62(1-2): 232-237, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34157067

RESUMEN

This case report discusses Type I hypersensitivity in ferrets following exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inoculum, observed during a study investigating the efficacy of candidate COVID-19 vaccines. Following a comprehensive internal root-cause investigation, it was hypothesized that prior prime-boost immunization of ferrets with a commercial canine C3 vaccine to protect against the canine distemper virus had resulted in primary immune response to fetal bovine serum (FBS) in the C3 preparation. Upon intranasal exposure to SARS-CoV-2 virus cultured in medium containing FBS, an allergic airway response occurred in 6 out of 56 of the ferrets. The 6 impacted ferrets were randomly dispersed across study groups, including different COVID-19 vaccine candidates, routes of vaccine candidate administration, and controls (placebo). The root-cause investigation and subsequent analysis determined that the allergic reaction was unrelated to the COVID-19 vaccine candidates under evaluation. Histological assessment suggested that the allergic response was characterized by eosinophilic airway disease; increased serum immunoglobulin levels reactive to FBS further suggested this response was caused by immune priming to FBS present in the C3 vaccine. This was further supported by in vivo studies demonstrating ferrets administered diluted FBS also presented clinical signs consistent with a hyperallergic response, while clinical signs were absent in ferrets that received a serum-free SARS-CoV-2 inoculum. It is therefore recommended that vaccine studies in higher order animals should consider the impact of welfare vaccination and use serum-free inoculum whenever possible.


Asunto(s)
COVID-19 , Hipersensibilidad Inmediata , Vacunas Virales , Animales , Vacunas contra la COVID-19 , Perros , Hurones , SARS-CoV-2
8.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972565

RESUMEN

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

9.
NPJ Vaccines ; 5: 96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083031

RESUMEN

The 'D614G' mutation (Aspartate-to-Glycine change at position 614) of the SARS-CoV-2 spike protein has been speculated to adversely affect the efficacy of most vaccines and countermeasures that target this glycoprotein, necessitating frequent vaccine matching. Virus neutralisation assays were performed using sera from ferrets which received two doses of the INO-4800 COVID-19 vaccine, and Australian virus isolates (VIC01, SA01 and VIC31) which either possess or lack this mutation but are otherwise comparable. Through this approach, supported by biomolecular modelling of this mutation and the commonly-associated P314L mutation in the RNA-dependent RNA polymerase, we have shown that there is no experimental evidence to support this speculation. We additionally demonstrate that the putative elastase cleavage site introduced by the D614G mutation is unlikely to be accessible to proteases.

10.
Immunotherapy ; 8(9): 1021-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27380317

RESUMEN

AIM: Current therapies against avian influenza (H5N1) provide limited clinical benefit. FBF-001 is a highly purified equine polyclonal immunoglobulin fragment against H5N1. METHODS: Using a ferret model of severe acute H5N1 infection, we assessed FBF-001 when administered on the same day or 1 day after viral challenge, in comparison with oseltamivir therapy. RESULTS: Untreated animals died 2-3 days after challenge. FBF-001 prevented most severe illness and reduced nasal viral load, with best efficacy when administered on the day of viral challenge. Oseltamivir and FBF-001 had synergistic impact on survival. CONCLUSION: FBF-001 prevented severe consequences of lethal H5N1 challenge in ferrets by controlling viral replication, an effect synergistic to oseltamivir. FBF-001 has recently been granted EMA orphan drug status.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Antivirales/uso terapéutico , Inmunización Pasiva/métodos , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/terapia , Oseltamivir/uso terapéutico , Animales , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Hurones , Caballos , Producción de Medicamentos sin Interés Comercial , Infecciones por Orthomyxoviridae/inmunología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA