RESUMEN
Acute kidney injury (AKI) is a serious condition affecting one fifth of hospital inpatients. B lymphocytes have immunological functions beyond Ab production and may produce cytokines and chemokines that modulate inflammation. In this study, we investigated leukocyte responses in a mouse model of AKI and observed an increase in circulating and kidney B cells, particularly a B220low subset, following AKI. We found that B cells produce the chemokine CCL7, with the potential to facilitate neutrophil and monocyte recruitment to the injured kidney. Siglec-G-deficient mice, which have increased numbers of B220low innate B cells and a lower B cell activation threshold, had increased Ccl7 transcripts, increased neutrophil and monocyte numbers in the kidney, and more severe AKI. CCL7 blockade in mice reduced myeloid cell infiltration into the kidney and ameliorated AKI. In two independent cohorts of human patients with AKI, we observed significantly higher CCL7 transcripts compared with controls, and in a third cohort, we observed an increase in urinary CCL7 levels in AKI, supporting the clinical importance of this pathway. Together, our data suggest that B cells contribute to early sterile inflammation in AKI via the production of leukocyte-recruiting chemokines.
Asunto(s)
Lesión Renal Aguda/inmunología , Linfocitos B/inmunología , Quimiocina CCL7/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/inmunología , Riñón/inmunología , Leucocitos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-ß-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.
RESUMEN
AIM: Percutaneous transluminal angioplasty (PTA) is a standard treatment for arteriovenous fistula (AVF) stenosis to preserve haemodialysis vascular access, promoting improved dialysis adequacy and better outcomes for those dependent on renal replacement therapy. Drug coated balloons (DCB) may help reduce the rate of neointimal hyperplasia and recurrent stenosis, but their use in femoropopliteal angioplasty has been associated with increased mortality at 2 and 5 year follow-up. This study aims to address the long-term safety of PTA for AVF stenosis with clinical correlation to participant co-morbidity and mortality. METHODS: All patients undergoing PTA for AVF stenosis at a single centre between 2013 and 2017 were identified and grouped according to the use of DCB versus standard balloon angioplasty. All data was anonymised and correlated to verify independent predictors of mortality. RESULTS: 481 (400 standard balloon; 81 DCB) procedures were performed in 313 patients (250 standard balloon; 63 DCB). Follow-up at 80 months did not show any difference in mortality (p = 0.546). Multivariate analysis identified time on dialysis (p < 0.001), age (p = 0.001) and Charlson comorbidity index (p = 0.02) as independent predictors of mortality. CONCLUSIONS: In this study, mortality was not associated with the use of DCBs, but was related to established factors of dialysis longevity, age and comorbidity.
RESUMEN
Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.