Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38261034

RESUMEN

Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood-brain barrier and the "cytokine storm", appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson's and Alzheimer's disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aß deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it's highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the "multiple hit hypothesis". Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate "neuroinflammation" and "inflammation" with regard to the involvement of the blood-brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.

2.
J Neural Transm (Vienna) ; 131(6): 639-661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196001

RESUMEN

Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.


Asunto(s)
Dopamina , Mitocondrias , Monoaminooxidasa , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Inhibidores de la Monoaminooxidasa/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-37329350

RESUMEN

A biomarker for declined methylation capacity is elevation of homocysteine levels. They increase the risk for onset of vascular disease and contribute to progression of chronic neurodegeneration and aging. This narrative review discusses associations between homocysteine, consumption of methyl group-donating vitamins and impact on disease-generating mechanisms in levodopa-treated patients with Parkinson's disease. We conclude to recommend levodopa-treated patients to substitute themselves with methyl group-donating vitamins. This is harmless in terms of application of folic acid, methylcobalamin or hydroxocobalamin. Moreover, we suggest a crucial discussion on the value of the various popular hypotheses on Parkinson's disease-generating mechanisms. Findings from studies with acute levodopa exposure describe oxidative stress generation and impaired methylation capacity, which causes gene dysfunction. Their repeated occurrences contribute to onset of mitochondrial dysfunction, iron enrichment and pathologic protein accumulation in the long term. Current research underestimates these epigenetic, metabolic consequences of chronic levodopa application. Supplementary treatment strategies are recommended to avoid levodopa-related side effects.

4.
J Neural Transm (Vienna) ; 130(11): 1323-1335, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37796288

RESUMEN

Dopamine was initially considered as a mere intermediate in the noradrenaline synthesis but was then found to be a neurotransmitter. Its depletion resulted in characteristic symptoms in experimental studies and could be antagonized by DOPA (3,4-dihydroxyphenylalanin), suggesting a similarity to the human disorder Parkinson´s disease (PD) and a therapeutic potential which was successfully exploited from the 1970s on. This was due to the pioneering work of Arvid Carlsson and clinicians around the world who first worked on the breakthrough of L-DOPA therapy and then on its amendment and modification and on alternative therapies for PD patients. All these developments led to the establishment of PD therapy as we know it today. It is characterized by the availability of many different compounds which are mostly employed in combination and by different methods: orally, intravenously, transdermally, subcutaneously, or duodenally. Here, we present without claim of completeness some personal reflections about causal drug developments for PD patients and reflect on some personal interactions with leading clinicians and basic researchers who cooperated with us. Such interactions are crucial for the creation, sometimes serendipitously, of fresh ideas and to further develop existing concepts to make therapeutical progress.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Antiparkinsonianos/uso terapéutico , Berlin , Dopamina
5.
Artículo en Inglés | MEDLINE | ID: mdl-37227594

RESUMEN

Multiple System Atrophy (MSA) and Parkinson's diseases (PD) are elite members of the α-synucleinopathy organization. Aberrant accumulations of the protein α-synuclein characterize them. A plethora of evidence indicates the involvement of these rogue inclusions in a cascade of events that disturb cellular homeostasis resulting in neuronal dysfunction. These two neurodegenerative diseases share many features both clinically and pathologically. Cytotoxic processes commonly induced by reactive free radical species have been associated with oxidative stress and neuroinflammation, frequently reported in both diseases. However, it appears they have characteristic and distinct α-synuclein inclusions. It is glial cytoplasmic inclusions in the case of MSA while Lewy bodies manifest in PD. This is probably related to the etiology of the illness. At present, precise mechanism(s) underlying the characteristic configuration of neurodegeneration are unclear. Furthermore, the "prion-like" transmission from cell to cell prompts the suggestion that perhaps these α-synucleinopathies are prion-like diseases. The possibility of some underlying genetic foul play remains controversial. But as major culprits of pathological processes or even single triggers of PD and MSA are the same-like oxidative stress, iron-induced pathology, mitochondriopathy, loss of respiratory activity, loss of proteasomal function, microglial activation, neuroinflammation-it is not farfetched to assume that in sporadic PD and also in MSA a variety of combinations of susceptibility genes contribute to the regional specificity of pathological onset. These players of pathology, as mentioned above, in a synergistic combination, are responsible for driving the progression of PD, MSA and other neurodegenerative disorders. Elucidating the triggers and progression factors is vital for advocating disease modification or halting its progression in both, MSA and PD.

6.
J Neural Transm (Vienna) ; 130(11): 1451-1462, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603058

RESUMEN

Emerging studies suggest a correlation between elevated plasma homocysteine (hcy) levels and the risk of atherosclerosis, vascular disorders, and neurodegenerative diseases, including Parkinson's disease (PD). This narrative review delves into the intricate relationships between Hcy, vitamin B metabolites, dopamine-substituting compounds, and various symptoms of PD. Patients undergoing a long-term L-dopa/dopa-decarboxylase inhibitor (DDI) regimen, especially without a concurrent catechol-O-methyl transferase (COMT) inhibitor or methyl group-donating vitamin supplementation, such as vitamins B6 and B12, exhibit an elevation in Hcy and a decline in vitamin B metabolites. These altered concentrations appear to be associated with heightened risks of developing non-motor symptoms, including peripheral neuropathy and cognitive disturbances. The review underscores the impact of levodopa metabolism via COMT on homocysteine levels. In light of these findings, we advocate for the supplementation of methyl group-donating vitamins, notably B6 and B12, in patients undergoing a high-dose L-dopa/DDI regimen, particularly those treated with L-dopa/carbidopa intestinal gel (LCIG) infusion.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Humanos , Levodopa/efectos adversos , Enfermedad de Parkinson/complicaciones , Antiparkinsonianos/efectos adversos , Dopamina , Catecol O-Metiltransferasa , Homocisteína/uso terapéutico , Vitaminas/uso terapéutico , Vitamina B 12/uso terapéutico
7.
J Neural Transm (Vienna) ; 130(6): 827-838, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169935

RESUMEN

The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Cuerpos de Lewy/metabolismo , Encéfalo/metabolismo , Linfocitos T/metabolismo
8.
J Neural Transm (Vienna) ; 130(5): 627-646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062012

RESUMEN

Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/metabolismo , Hierro/metabolismo , alfa-Sinucleína/metabolismo , Inflamación/patología
9.
J Neural Transm (Vienna) ; 130(5): 611-625, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939908

RESUMEN

The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine ß-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Cisteína/metabolismo , Melaninas/metabolismo , Catecolaminas/metabolismo , Norepinefrina/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
10.
J Neural Transm (Vienna) ; 129(10): 1257-1270, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852604

RESUMEN

Neuromelanin is a black-brownish pigment, present in so-called neuromelanin granules (NMGs) in the cell bodies of dopaminergic neurons in the substantia nigra (SN) pars compacta. These neurons are lost in neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. Although it is known that lipids, proteins, and environmental toxins accumulate in NMGs, the function of NMGs has not yet been finally clarified as well as their origin and the synthesis of neuromelanin. We, therefore, isolated NMGs and surrounding SN tissue from control patients by laser microdissection and analyzed the proteomic profile by tandem mass spectrometry. With our improved workflow, we were able to (1) strengthen the regularly reported link between NMGs and lysosomes, (2) detect tyrosine hydroxylase to be highly abundant in NMGs, which may be related to neuromelanin synthesis and (3) indicate a yet undescribed link between stress granules (SGs) and NMGs. Based on our findings, we cautiously hypothesize, that SGs may be the origin of NMGs or form in close proximity to them, potentially due to the oxidative stress caused by neuromelanin-bound metals.


Asunto(s)
Proteómica , Tirosina 3-Monooxigenasa , Humanos , Lisosomas/metabolismo , Melaninas/metabolismo , Proteómica/métodos , Gránulos de Estrés , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
11.
J Neural Transm (Vienna) ; 129(9): 1201-1217, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35428925

RESUMEN

The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Diagnóstico Diferencial , Progresión de la Enfermedad , Humanos , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína
12.
J Neural Transm (Vienna) ; 129(5-6): 545-555, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364741

RESUMEN

Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.


Asunto(s)
Enfermedad de Parkinson , Autoanticuerpos , Autoantígenos/metabolismo , Encéfalo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo
13.
Pharmacopsychiatry ; 55(1): 7-15, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35079985

RESUMEN

Since the beginning of the coronavirus disease (COVID)-19 pandemic, the need for effective treatments for COVID-19 led to the idea of "repurposing" drugs for antiviral treatment. Several antipsychotics and antidepressants have been tested for in vitro activity against the severe acute respiratory syndrome coronavirus 2. Chlorpromazine, other phenothiazine antipsychotics, and the antidepressant fluoxetine were found to be rather potent in these studies. However, whether effective plasma concentrations can be obtained with clinically accepted doses of these drugs is not clear. Data of COVID-19 patients are not yet available but several clinical studies are currently underway.The specific serotonin reuptake inhibitor fluvoxamine is a potent Sigma-1 receptor agonist and reduces inflammation in animal models of cytokine-stress. Accordingly, fluvoxamine treatment was superior to placebo in reducing impaired respiratory function and other symptoms of inflammation in COVID-19 patients in a placebo-controlled clinical study and another open clinical trial. The beneficial effects of fluvoxamine on the course of COVID-19 were recently confirmed in a large placebo-controlled double-blind trial with several hundred patients.Inflammation represents a major risk factor for many psychiatric disorders which explains the high susceptibilitiy of COVID-19 patients for psychiatric diseases. Many antidepressants and antipsychotics possess anti-inflammatory properties independent of sigma-1 activity which might be important to reduce psychiatric symptoms of COVID-19 patients and to improve respiratory dysfunction and other consequences of inflammation. This might explain the rather unspecific benefit which has been reported for several cohorts of COVID-19 patients treated with different psychotropic drugs.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Humanos , Pandemias , SARS-CoV-2 , Inhibidores Selectivos de la Recaptación de Serotonina
14.
J Neural Transm (Vienna) ; 128(2): 127-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33624170

RESUMEN

The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.


Asunto(s)
Enfermedad de Huntington , Enfermedad de Parkinson , Amantadina/uso terapéutico , Diamante , Humanos , Receptores de N-Metil-D-Aspartato
15.
J Neural Transm (Vienna) ; 127(9): 1217-1228, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32725545

RESUMEN

While there is abounding literature on virus-induced pathology in general and coronavirus in particular, recent evidence accumulates showing distinct and deleterious brain affection. As the respiratory tract connects to the brain without protection of the blood-brain barrier, SARS-CoV-2 might in the early invasive phase attack the cardiorespiratory centres located in the medulla/pons areas, giving rise to disturbances of respiration and cardiac problems. Furthermore, brainstem regions are at risk to lose their functional integrity. Therefore, long-term neurological as well as psychiatric symptomatology and eventual respective disorders cannot be excluded as evidenced from influenza-A triggered post-encephalitic Parkinsonism and HIV-1 triggered AIDS-dementia complex. From the available evidences for coronavirus-induced brain pathology, this review concludes a number of unmet needs for further research strategies like human postmortem brain analyses. SARS-CoV-2 mirroring experimental animal brain studies, characterization of time-dependent and region-dependent spreading behaviours of coronaviruses, enlightening of pathological mechanisms after coronavirus infection using long-term animal models and clinical observations of patients having had COVID-19 infection are calling to develop both protective strategies and drug discoveries to avoid early and late coronavirus-induced functional brain disturbances, symptoms and eventually disorders. To fight SARS-CoV-2, it is an urgent need to enforce clinical, molecular biological, neurochemical and genetic research including brain-related studies on a worldwide harmonized basis.


Asunto(s)
Betacoronavirus , Encéfalo/patología , Infecciones por Coronavirus/patología , Diagnóstico , Neumonía Viral/patología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/virología , Encéfalo/virología , COVID-19 , Técnicas y Procedimientos Diagnósticos/tendencias , Humanos , Pandemias , SARS-CoV-2 , Factores de Tiempo
16.
J Neural Transm (Vienna) ; 127(5): 749-754, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32318880

RESUMEN

Misfolding of the protein α-synuclein contributes to the formation of the intracellular inclusion, Lewy bodies. Although these structures are not exclusive to Parkinson's disease, nevertheless, their presence in the substantia nigra is mandatory for the pathological diagnosis of the disorder. Therefore, there must be a focus on the pathological mechanisms responsible for Lewy body generation. Recent studies have suggested that α-synuclein has the potential to operate as the enzyme ferrireductase. Perhaps in the early diseased state, overexpression or mutation of alpha-synuclein/ferrireductase invokes the dyshomeostasis of iron (III)/(II) only, while in advanced stages, accumulation of iron in particular areas of the brain follows. Furthermore, the loss of an important iron chelator, neuromelanin (due to dopaminergic neuronal death), may then result in the release and increase in unbound free iron. Iron could generate reactive oxygen species, which could instigate a torrent of cellular deleterious processes. In addition, loss of energy supply may contribute to the alteration in activity of enzymes involved in the mitochondrial respiratory chain and would, therefore, confer a vulnerability to the dopaminergic neurons in the substantia nigra. Therefore, the ferrireductase alpha-synuclein may hold the key for major pathology of Parkinson's disease. In conclusion, we hypothesize that environmentally or genetically overexpressed and/or mutated α-synuclein/ferrireductase causes iron dyshomeostasis without increase of free iron concentration in the early phases of PD, while increased iron concentration accompanied by iron dyshomeostasis is a marker for progressed PD stages. It is essential to elucidate these degenerative mechanisms, so as to provide effective therapeutic treatment to halt or delay the progression of the illness already in the early phase of PD. The development of iron chelators seems to be a reasonable approach.


Asunto(s)
FMN Reductasa/metabolismo , Hierro/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Humanos , Enfermedad de Parkinson/enzimología
17.
J Neural Transm (Vienna) ; 127(5): 831-842, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31562557

RESUMEN

Monoamine oxidase B (MAO-B) inhibitors have an established role in the treatment of Parkinson's disease as monotherapy or adjuvant to levodopa. Two major recognitions were required for their introduction into this therapeutic field. The first was the elucidation of the novel pharmacological properties of selegiline as a selective MAO-B inhibitor by Knoll and Magyar and the original idea of Riederer and Youdim, supported by Birkmayer, to explore its effect in parkinsonian patients with on-off phases. In the 1960s, MAO inhibitors were mainly studied as potential antidepressants, but Birkmayer found that combined use of levodopa and various MAO inhibitors improved akinesia in Parkinson's disease. However, the serious side effects of the first non-selective MAO inhibitors prevented their further use. Later studies demonstrated that MAO-B, mainly located in glial cells, is important for dopamine metabolism in the brain. Recently, cell and molecular studies revealed interesting properties of selegiline opening new possibilities for neuroprotective mechanisms and a disease-modifying effect of MAO-B inhibitors.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Animales , Humanos
18.
J Neural Transm (Vienna) ; 127(5): 755-762, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32385576

RESUMEN

Parkinson's disease (PD) etiology is heterogeneous, genetic, and multi-factorial, resulting in a varied disease from a mild slow progression to a more severe rapid progression. Prognostic information on the nature of the patient's disease at diagnosis aids the physician in counseling patients on treatment options and life planning. In a cohort of PD patients from the PPMI study, the relative gene expression levels of SKP1A, UBE2K, ALDH1A1, PSMC4, HSPA8 and LAMB2 were measured in baseline blood samples by real-time quantitative PCR. At baseline PD patients were up to 2 years from diagnosis, H&Y scale ≤ 2 and PD treatment naïve. PD-Prediction algorithm comprised of ALDH1A1, LAMB2, UBE2K, SKP1A and age was created by logistic regression for predicting progression to ≤ 70% Modified Schwab and England Activities of Daily Living (S&E-ADL). In relation to patients negative for PD-Prediction (n = 180), patients positive (n = 30) for Cutoff-1 (at 82% specificity, 80.0% sensitivity) had positive hazard ratio (HR+) of 10.6 (95% CI, 2.2-50.1), and positive (n = 23) for Cutoff-2 (at 93% specificity, 47% sensitivity) had HR+ of 17.1 (95% CI, 3.2-89.9) to progress to ≤ 70% S&E-ADL within 3 years (P value < 0.0001). Likewise, patients positive for PD-Prediction Cutoff-1 (n = 49) had HR+ 4.3 (95% CI, 1.6-11.6) for faster time to H&Y 3 in relation to patients negative (n = 170) for PD-Prediction (P value = 0.0002). Our findings show an algorithm that seems to predict fast PD progression and may potentially be used as a tool to assist the physician in choosing an optimal treatment plan, improving the patient's quality of life and overall health outcome.


Asunto(s)
Progresión de la Enfermedad , Expresión Génica/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , Pronóstico , Sensibilidad y Especificidad
19.
J Neural Transm (Vienna) ; 127(2): 231-250, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32030485

RESUMEN

Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common chronic neurodegenerative disorders, characterized by motoric dysfunction or cognitive decline in the early stage, respectively, but often by both symptoms in the advanced stage. Among underlying molecular pathologies that PD and AD patients have in common, more attention is recently paid to the central metabolic dysfunction presented as insulin resistant brain state (IRBS) and altered cerebral glucose metabolism, both also explored in animal models of these diseases. This review aims to compare IRBS and alterations in cerebral glucose metabolism in representative non-transgenic animal PD and AD models. The comparison is based on the selectivity of the neurotoxins which cause experimental PD and AD, towards the cellular membrane and intracellular molecular targets as well as towards the selective neurons/non-neuronal cells, and the particular brain regions. Mitochondrial damage and co-expression of insulin receptors, glucose transporter-2 and dopamine transporter on the membrane of particular neurons as well as astrocytes seem to be the key points which are further discussed in a context of alterations in insulin signalling in the brain and its interaction with dopaminergic transmission, particularly regarding the time frame of the experimental AD/PD pathology appearance and the correlation with cognitive and motor symptoms. Such a perspective provides evidence on IRBS being a common underlying metabolic pathology and a contributor to neurodegenerative processes in representative non-transgenic animal PD and AD models, instead of being a direct cause of a particular neurodegenerative disorder.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Neurotoxinas/farmacología , Oxidopamina/farmacología , Enfermedad de Parkinson/metabolismo , Estreptozocina/farmacología , Animales , Neurotoxinas/toxicidad , Oxidopamina/toxicidad , Estreptozocina/toxicidad
20.
Fortschr Neurol Psychiatr ; 88(9): 591-599, 2020 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-32396943

RESUMEN

There is consensus that the neuropathological characteristic of Parkinson's disease (PD) is the neuronal cell loss of the substantia nigra pars compacta (SNc) in connection with a Lewy pathology. The transsynaptic spread of Lewy pathology is considered essential in PD pathogenesis. Therefore, the knowledge of pre-existing neuroanatomical connections of the SNc is essential. We describe recent animal experiments on the afferent and efferent projections of the SNc and discuss the evidence for and against the sequential transsynaptic spread of Lewy pathology in the pathogenesis of PD.


Asunto(s)
Enfermedad de Parkinson , Porción Compacta de la Sustancia Negra , Animales , Humanos , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA